This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No filter base containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbfinnfr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐹 ↔ 𝑦 ∈ 𝐹 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) ) ) |
| 3 | 2 | imbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 4 | eleq1 | ⊢ ( 𝑥 = 𝑆 → ( 𝑥 ∈ 𝐹 ↔ 𝑆 ∈ 𝐹 ) ) | |
| 5 | 4 | anbi2d | ⊢ ( 𝑥 = 𝑆 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ) ) ) |
| 6 | 5 | imbi1d | ⊢ ( 𝑥 = 𝑆 → ( ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 7 | bi2.04 | ⊢ ( ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) | |
| 8 | ibar | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑥 ∈ 𝐹 ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∈ 𝐹 ↔ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) ) ) |
| 10 | 9 | imbi1d | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ↔ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) ) |
| 11 | 7 10 | bitr4id | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ↔ ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) ) |
| 12 | 11 | albidv | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) ) |
| 13 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) | |
| 14 | 12 13 | bitr4di | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ↔ ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) ) |
| 15 | 0nelfb | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ¬ ∅ ∈ 𝐹 ) | |
| 16 | eleq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ 𝐹 ↔ ∅ ∈ 𝐹 ) ) | |
| 17 | 16 | notbid | ⊢ ( 𝑦 = ∅ → ( ¬ 𝑦 ∈ 𝐹 ↔ ¬ ∅ ∈ 𝐹 ) ) |
| 18 | 15 17 | syl5ibrcom | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑦 = ∅ → ¬ 𝑦 ∈ 𝐹 ) ) |
| 19 | 18 | necon2ad | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝑦 ∈ 𝐹 → 𝑦 ≠ ∅ ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ≠ ∅ ) |
| 21 | ssn0 | ⊢ ( ( 𝑦 ⊆ ∩ 𝐹 ∧ 𝑦 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) | |
| 22 | 21 | ex | ⊢ ( 𝑦 ⊆ ∩ 𝐹 → ( 𝑦 ≠ ∅ → ∩ 𝐹 ≠ ∅ ) ) |
| 23 | 20 22 | syl5com | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 ⊆ ∩ 𝐹 → ∩ 𝐹 ≠ ∅ ) ) |
| 24 | 23 | a1dd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 ⊆ ∩ 𝐹 → ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 25 | ssint | ⊢ ( 𝑦 ⊆ ∩ 𝐹 ↔ ∀ 𝑧 ∈ 𝐹 𝑦 ⊆ 𝑧 ) | |
| 26 | 25 | notbii | ⊢ ( ¬ 𝑦 ⊆ ∩ 𝐹 ↔ ¬ ∀ 𝑧 ∈ 𝐹 𝑦 ⊆ 𝑧 ) |
| 27 | rexnal | ⊢ ( ∃ 𝑧 ∈ 𝐹 ¬ 𝑦 ⊆ 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝐹 𝑦 ⊆ 𝑧 ) | |
| 28 | 26 27 | bitr4i | ⊢ ( ¬ 𝑦 ⊆ ∩ 𝐹 ↔ ∃ 𝑧 ∈ 𝐹 ¬ 𝑦 ⊆ 𝑧 ) |
| 29 | fbasssin | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) | |
| 30 | nssinpss | ⊢ ( ¬ 𝑦 ⊆ 𝑧 ↔ ( 𝑦 ∩ 𝑧 ) ⊊ 𝑦 ) | |
| 31 | sspsstr | ⊢ ( ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ∧ ( 𝑦 ∩ 𝑧 ) ⊊ 𝑦 ) → 𝑥 ⊊ 𝑦 ) | |
| 32 | 30 31 | sylan2b | ⊢ ( ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ∧ ¬ 𝑦 ⊆ 𝑧 ) → 𝑥 ⊊ 𝑦 ) |
| 33 | 32 | expcom | ⊢ ( ¬ 𝑦 ⊆ 𝑧 → ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → 𝑥 ⊊ 𝑦 ) ) |
| 34 | 33 | reximdv | ⊢ ( ¬ 𝑦 ⊆ 𝑧 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) |
| 35 | 29 34 | syl5com | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ( ¬ 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) |
| 36 | 35 | 3expia | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑧 ∈ 𝐹 → ( ¬ 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) ) |
| 37 | 36 | rexlimdv | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∃ 𝑧 ∈ 𝐹 ¬ 𝑦 ⊆ 𝑧 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) |
| 38 | 28 37 | biimtrid | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ¬ 𝑦 ⊆ ∩ 𝐹 → ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) ) |
| 39 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) → ∃ 𝑥 ∈ 𝐹 ( ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ 𝑥 ⊊ 𝑦 ) ) | |
| 40 | id | ⊢ ( ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ) | |
| 41 | 40 | imp | ⊢ ( ( ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ 𝑥 ⊊ 𝑦 ) → ∩ 𝐹 ≠ ∅ ) |
| 42 | 41 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐹 ( ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ 𝑥 ⊊ 𝑦 ) → ∩ 𝐹 ≠ ∅ ) |
| 43 | 39 42 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 ) → ∩ 𝐹 ≠ ∅ ) |
| 44 | 43 | expcom | ⊢ ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊊ 𝑦 → ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) ) |
| 45 | 38 44 | syl6 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ¬ 𝑦 ⊆ ∩ 𝐹 → ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 46 | 24 45 | pm2.61d | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑥 ∈ 𝐹 ( 𝑥 ⊊ 𝑦 → ∩ 𝐹 ≠ ∅ ) → ∩ 𝐹 ≠ ∅ ) ) |
| 47 | 14 46 | sylbid | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) → ∩ 𝐹 ≠ ∅ ) ) |
| 48 | 47 | com12 | ⊢ ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) |
| 49 | 48 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑥 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) ) |
| 50 | 3 6 49 | findcard3 | ⊢ ( 𝑆 ∈ Fin → ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ) → ∩ 𝐹 ≠ ∅ ) ) |
| 51 | 50 | com12 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ) → ( 𝑆 ∈ Fin → ∩ 𝐹 ≠ ∅ ) ) |
| 52 | 51 | 3impia | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ∧ 𝑆 ∈ 𝐹 ∧ 𝑆 ∈ Fin ) → ∩ 𝐹 ≠ ∅ ) |