This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If exactly one of two permutations is limited to a set of points, then the composition will not be. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1omvdco2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excxor | ⊢ ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ↔ ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ∨ ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) ) | |
| 2 | coass | ⊢ ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) | |
| 3 | f1ococnv1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
| 4 | 3 | coeq1d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = ( ( I ↾ 𝐴 ) ∘ 𝐺 ) ) |
| 5 | f1of | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → 𝐺 : 𝐴 ⟶ 𝐴 ) | |
| 6 | fcoi2 | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝐺 ) = 𝐺 ) |
| 8 | 4 7 | sylan9eq | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ◡ 𝐹 ∘ 𝐹 ) ∘ 𝐺 ) = 𝐺 ) |
| 9 | 2 8 | eqtr3id | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) = 𝐺 ) |
| 10 | 9 | difeq1d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) = ( 𝐺 ∖ I ) ) |
| 11 | 10 | dmeqd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) = dom ( 𝐺 ∖ I ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) = dom ( 𝐺 ∖ I ) ) |
| 13 | mvdco | ⊢ dom ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) ⊆ ( dom ( ◡ 𝐹 ∖ I ) ∪ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) | |
| 14 | f1omvdcnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) ) | |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) ) |
| 16 | simprl | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) | |
| 17 | 15 16 | eqsstrd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝐹 ∖ I ) ⊆ 𝑋 ) |
| 18 | simprr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) | |
| 19 | 17 18 | unssd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → ( dom ( ◡ 𝐹 ∖ I ) ∪ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) ⊆ 𝑋 ) |
| 20 | 13 19 | sstrid | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ◡ 𝐹 ∘ ( 𝐹 ∘ 𝐺 ) ) ∖ I ) ⊆ 𝑋 ) |
| 21 | 12 20 | eqsstrrd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) |
| 22 | 21 | expr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 → dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) |
| 23 | 22 | con3d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ( ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
| 24 | 23 | expimpd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
| 25 | coass | ⊢ ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) = ( 𝐹 ∘ ( 𝐺 ∘ ◡ 𝐺 ) ) | |
| 26 | f1ococnv2 | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ( 𝐺 ∘ ◡ 𝐺 ) = ( I ↾ 𝐴 ) ) | |
| 27 | 26 | coeq2d | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → ( 𝐹 ∘ ( 𝐺 ∘ ◡ 𝐺 ) ) = ( 𝐹 ∘ ( I ↾ 𝐴 ) ) ) |
| 28 | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → 𝐹 : 𝐴 ⟶ 𝐴 ) | |
| 29 | fcoi1 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 ) | |
| 30 | 28 29 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 ) |
| 31 | 27 30 | sylan9eqr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝐹 ∘ ( 𝐺 ∘ ◡ 𝐺 ) ) = 𝐹 ) |
| 32 | 25 31 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) = 𝐹 ) |
| 33 | 32 | difeq1d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐹 ∖ I ) ) |
| 34 | 33 | dmeqd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → dom ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) = dom ( 𝐹 ∖ I ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) = dom ( 𝐹 ∖ I ) ) |
| 36 | mvdco | ⊢ dom ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ∪ dom ( ◡ 𝐺 ∖ I ) ) | |
| 37 | simprr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) | |
| 38 | f1omvdcnv | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐴 → dom ( ◡ 𝐺 ∖ I ) = dom ( 𝐺 ∖ I ) ) | |
| 39 | 38 | ad2antlr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝐺 ∖ I ) = dom ( 𝐺 ∖ I ) ) |
| 40 | simprl | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) | |
| 41 | 39 40 | eqsstrd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ◡ 𝐺 ∖ I ) ⊆ 𝑋 ) |
| 42 | 37 41 | unssd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ∪ dom ( ◡ 𝐺 ∖ I ) ) ⊆ 𝑋 ) |
| 43 | 36 42 | sstrid | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( ( ( 𝐹 ∘ 𝐺 ) ∘ ◡ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |
| 44 | 35 43 | eqsstrrd | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) |
| 45 | 44 | expr | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 → dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) ) |
| 46 | 45 | con3d | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
| 47 | 46 | expimpd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( dom ( 𝐺 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
| 48 | 47 | ancomsd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
| 49 | 24 48 | jaod | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ ¬ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ∨ ( ¬ dom ( 𝐹 ∖ I ) ⊆ 𝑋 ∧ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
| 50 | 1 49 | biimtrid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ) → ( ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) ) |
| 51 | 50 | 3impia | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ 𝑋 ⊻ dom ( 𝐺 ∖ I ) ⊆ 𝑋 ) ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ 𝑋 ) |