This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008) (Proof shortened by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnlbnd2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expnlbnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑗 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 ) | |
| 2 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐵 ∈ ℝ ) | |
| 3 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 1 < 𝐵 ) | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | ltle | ⊢ ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1 < 𝐵 → 1 ≤ 𝐵 ) ) | |
| 6 | 4 2 5 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 1 < 𝐵 → 1 ≤ 𝐵 ) ) |
| 7 | 3 6 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 1 ≤ 𝐵 ) |
| 8 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 9 | leexp2a | ⊢ ( ( 𝐵 ∈ ℝ ∧ 1 ≤ 𝐵 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐵 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑘 ) ) | |
| 10 | 2 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐵 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑘 ) ) |
| 11 | 0red | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ∈ ℝ ) | |
| 12 | 1red | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 1 ∈ ℝ ) | |
| 13 | 0lt1 | ⊢ 0 < 1 | |
| 14 | 13 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 < 1 ) |
| 15 | 11 12 2 14 3 | lttrd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 < 𝐵 ) |
| 16 | 2 15 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐵 ∈ ℝ+ ) |
| 17 | nnz | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) | |
| 18 | 17 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℤ ) |
| 19 | rpexpcl | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑗 ∈ ℤ ) → ( 𝐵 ↑ 𝑗 ) ∈ ℝ+ ) | |
| 20 | 16 18 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐵 ↑ 𝑗 ) ∈ ℝ+ ) |
| 21 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ ℤ ) | |
| 22 | 21 | ad2antll | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑘 ∈ ℤ ) |
| 23 | rpexpcl | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ+ ) | |
| 24 | 16 22 23 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐵 ↑ 𝑘 ) ∈ ℝ+ ) |
| 25 | 20 24 | lerecd | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐵 ↑ 𝑗 ) ≤ ( 𝐵 ↑ 𝑘 ) ↔ ( 1 / ( 𝐵 ↑ 𝑘 ) ) ≤ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 26 | 10 25 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 1 / ( 𝐵 ↑ 𝑘 ) ) ≤ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ) |
| 27 | 24 | rprecred | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 1 / ( 𝐵 ↑ 𝑘 ) ) ∈ ℝ ) |
| 28 | 20 | rprecred | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 1 / ( 𝐵 ↑ 𝑗 ) ) ∈ ℝ ) |
| 29 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐴 ∈ ℝ+ ) | |
| 30 | 29 | rpred | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐴 ∈ ℝ ) |
| 31 | lelttr | ⊢ ( ( ( 1 / ( 𝐵 ↑ 𝑘 ) ) ∈ ℝ ∧ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( 1 / ( 𝐵 ↑ 𝑘 ) ) ≤ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ∧ ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 ) → ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) | |
| 32 | 27 28 30 31 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 1 / ( 𝐵 ↑ 𝑘 ) ) ≤ ( 1 / ( 𝐵 ↑ 𝑗 ) ) ∧ ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 ) → ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
| 33 | 26 32 | mpand | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 → ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
| 34 | 33 | anassrs | ⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 → ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
| 35 | 34 | ralrimdva | ⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) ∧ 𝑗 ∈ ℕ ) → ( ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
| 36 | 35 | reximdva | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ( ∃ 𝑗 ∈ ℕ ( 1 / ( 𝐵 ↑ 𝑗 ) ) < 𝐴 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) ) |
| 37 | 1 36 | mpd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 1 / ( 𝐵 ↑ 𝑘 ) ) < 𝐴 ) |