This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite geometric series A ^ M + A ^ ( M + 1 ) + ... + A ^ ( N - 1 ) . (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | geoserg.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| geoserg.2 | ⊢ ( 𝜑 → 𝐴 ≠ 1 ) | ||
| geoserg.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | ||
| geoserg.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| Assertion | geoserg | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) = ( ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geoserg.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | geoserg.2 | ⊢ ( 𝜑 → 𝐴 ≠ 1 ) | |
| 3 | geoserg.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) | |
| 4 | geoserg.4 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 5 | fzofi | ⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) | |
| 9 | 7 1 8 | sylancr | ⊢ ( 𝜑 → ( 1 − 𝐴 ) ∈ ℂ ) |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 11 | elfzouz | ⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 12 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) | |
| 13 | 3 11 12 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 14 | 10 13 | expcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 15 | 6 9 14 | fsummulc1 | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) ) |
| 16 | 7 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 1 ∈ ℂ ) |
| 17 | 14 16 10 | subdid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · 1 ) − ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
| 18 | 14 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · 1 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 19 | 10 13 | expp1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 20 | 19 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) |
| 21 | 18 20 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( 𝐴 ↑ 𝑘 ) · 1 ) − ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) = ( ( 𝐴 ↑ 𝑘 ) − ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
| 22 | 17 21 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) = ( ( 𝐴 ↑ 𝑘 ) − ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
| 23 | 22 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) − ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
| 24 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 25 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) | |
| 26 | oveq2 | ⊢ ( 𝑗 = 𝑀 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑀 ) ) | |
| 27 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 28 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 29 | elfzuz | ⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 30 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℕ0 ) | |
| 31 | 3 29 30 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑗 ∈ ℕ0 ) |
| 32 | 28 31 | expcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 33 | 24 25 26 27 4 32 | telfsumo | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 ) − ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) ) |
| 34 | 15 23 33 | 3eqtrrd | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) ) |
| 35 | 1 3 | expcld | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 36 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℕ0 ) | |
| 37 | 3 4 36 | syl2anc | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 38 | 1 37 | expcld | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 39 | 35 38 | subcld | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) ∈ ℂ ) |
| 40 | 6 14 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 41 | 2 | necomd | ⊢ ( 𝜑 → 1 ≠ 𝐴 ) |
| 42 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) | |
| 43 | 7 1 42 | sylancr | ⊢ ( 𝜑 → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
| 44 | 43 | necon3bid | ⊢ ( 𝜑 → ( ( 1 − 𝐴 ) ≠ 0 ↔ 1 ≠ 𝐴 ) ) |
| 45 | 41 44 | mpbird | ⊢ ( 𝜑 → ( 1 − 𝐴 ) ≠ 0 ) |
| 46 | 39 40 9 45 | divmul3d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) ↔ ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) · ( 1 − 𝐴 ) ) ) ) |
| 47 | 34 46 | mpbird | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) = Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) ) |
| 48 | 47 | eqcomd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) = ( ( ( 𝐴 ↑ 𝑀 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |