This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzin | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztric | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) | |
| 2 | uzss | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | sseqin2 | ⊢ ( ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ↔ ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ 𝑁 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 5 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 6 | iftrue | ⊢ ( 𝑀 ≤ 𝑁 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑁 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑁 ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 9 | 4 8 | eqtr4d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 10 | uzss | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) | |
| 11 | dfss2 | ⊢ ( ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ↔ ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ 𝑀 ) ) | |
| 12 | 10 11 | sylib | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 13 | eluzle | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑀 ) | |
| 14 | eluzel2 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 15 | eluzelz | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 16 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 17 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 18 | letri3 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑁 = 𝑀 ↔ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ) | |
| 19 | 16 17 18 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 = 𝑀 ↔ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 20 | 14 15 19 | syl2anc | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 = 𝑀 ↔ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 21 | 13 20 | mpbirand | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 = 𝑀 ↔ 𝑀 ≤ 𝑁 ) ) |
| 22 | 21 | biimprcd | ⊢ ( 𝑀 ≤ 𝑁 → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 = 𝑀 ) ) |
| 23 | 6 | eqeq1d | ⊢ ( 𝑀 ≤ 𝑁 → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ↔ 𝑁 = 𝑀 ) ) |
| 24 | 22 23 | sylibrd | ⊢ ( 𝑀 ≤ 𝑁 → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ) ) |
| 25 | 24 | com12 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ≤ 𝑁 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ) ) |
| 26 | iffalse | ⊢ ( ¬ 𝑀 ≤ 𝑁 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ) | |
| 27 | 25 26 | pm2.61d1 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ) |
| 28 | 27 | fveq2d | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 29 | 12 28 | eqtr4d | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 30 | 9 29 | jaoi | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
| 31 | 1 30 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |