This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their subring evaluation at a given point X is a ring homomorphism. Compare evls1maprhm . (Contributed by SN, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsmaprhm.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝑆 ) | |
| evlsmaprhm.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsmaprhm.u | ⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) | ||
| evlsmaprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsmaprhm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| evlsmaprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) ) | ||
| evlsmaprhm.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsmaprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlsmaprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| evlsmaprhm.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlsmaprhm | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsmaprhm.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝑆 ) | |
| 2 | evlsmaprhm.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsmaprhm.u | ⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) | |
| 4 | evlsmaprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | evlsmaprhm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 6 | evlsmaprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) ) | |
| 7 | evlsmaprhm.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 8 | evlsmaprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 9 | evlsmaprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 10 | evlsmaprhm.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 12 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 14 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 15 | 3 | subrgring | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ∈ Ring ) |
| 16 | 9 15 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 17 | 2 7 16 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 18 | 8 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 19 | fveq2 | ⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ) | |
| 20 | 19 | fveq1d | ⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐴 ) ) |
| 21 | 4 11 | ringidcl | ⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
| 22 | 17 21 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
| 23 | fvexd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐴 ) ∈ V ) | |
| 24 | 6 20 22 23 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐴 ) ) |
| 25 | eqid | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) | |
| 26 | eqid | ⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) | |
| 27 | 2 25 26 11 7 16 | mplascl1 | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) = ( 1r ‘ 𝑃 ) ) |
| 28 | 27 | eqcomd | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) = ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ) |
| 30 | 29 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) |
| 31 | 3 12 | subrg1 | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑈 ) ) |
| 32 | 9 31 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑈 ) ) |
| 33 | 12 | subrg1cl | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 34 | 9 33 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 35 | 32 34 | eqeltrrd | ⊢ ( 𝜑 → ( 1r ‘ 𝑈 ) ∈ 𝑆 ) |
| 36 | 1 2 3 5 4 25 7 8 9 35 10 | evlsscaval | ⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 1r ‘ 𝑈 ) ) ) |
| 37 | 36 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 1r ‘ 𝑈 ) ) |
| 38 | 37 32 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 39 | 24 30 38 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑅 ) ) |
| 40 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
| 41 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑅 ∈ CRing ) |
| 42 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 43 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 44 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 ∈ 𝐵 ) | |
| 45 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ) | |
| 46 | 44 45 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ) ) |
| 47 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 ∈ 𝐵 ) | |
| 48 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) | |
| 49 | 47 48 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑟 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 50 | 1 2 3 5 4 40 41 42 43 46 49 13 14 | evlsmulval | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) ) |
| 51 | 50 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 52 | fveq2 | ⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ) | |
| 53 | 52 | fveq1d | ⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ) |
| 54 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
| 55 | 4 13 54 44 47 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ) |
| 56 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ∈ V ) | |
| 57 | 6 53 55 56 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ) |
| 58 | fveq2 | ⊢ ( 𝑝 = 𝑞 → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ 𝑞 ) ) | |
| 59 | 58 | fveq1d | ⊢ ( 𝑝 = 𝑞 → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ) |
| 60 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ∈ V ) | |
| 61 | 6 59 44 60 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑞 ) = ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ) |
| 62 | fveq2 | ⊢ ( 𝑝 = 𝑟 → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ 𝑟 ) ) | |
| 63 | 62 | fveq1d | ⊢ ( 𝑝 = 𝑟 → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) |
| 64 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ∈ V ) | |
| 65 | 6 63 47 64 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑟 ) = ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) |
| 66 | 61 65 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 67 | 51 57 66 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
| 68 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 69 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 70 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
| 71 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
| 72 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 73 | simpr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) | |
| 74 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 75 | 1 2 3 4 5 70 71 72 73 74 | evlscl | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 76 | 75 6 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐾 ) |
| 77 | 1 2 3 5 4 40 41 42 43 46 49 68 69 | evlsaddval | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( +g ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) ) |
| 78 | 77 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( +g ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 79 | fveq2 | ⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ) | |
| 80 | 79 | fveq1d | ⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ) |
| 81 | 17 | ringgrpd | ⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 82 | 81 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
| 83 | 4 68 82 44 47 | grpcld | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ) |
| 84 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ∈ V ) | |
| 85 | 6 80 83 84 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ) |
| 86 | 61 65 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( +g ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 87 | 78 85 86 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
| 88 | 4 11 12 13 14 17 18 39 67 5 68 69 76 87 | isrhmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |