This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlscl.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝑆 ) | |
| evlscl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlscl.u | ⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) | ||
| evlscl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlscl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| evlscl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlscl.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlscl.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| evlscl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| evlscl.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlscl | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlscl.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝑆 ) | |
| 2 | evlscl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlscl.u | ⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) | |
| 4 | evlscl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | evlscl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 6 | evlscl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 7 | evlscl.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 8 | evlscl.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 9 | evlscl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 10 | evlscl.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 11 | eqid | ⊢ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 12 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 13 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 14 | 1 2 3 11 5 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 15 | 6 7 8 14 | syl3anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 16 | 4 12 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 18 | 17 9 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 19 | 11 5 12 7 13 18 | pwselbas | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 20 | 19 10 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |