This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their subring evaluation at a given point X is a ring homomorphism. Compare evls1maprhm . (Contributed by SN, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsmaprhm.q | |- Q = ( ( I evalSub R ) ` S ) |
|
| evlsmaprhm.p | |- P = ( I mPoly U ) |
||
| evlsmaprhm.u | |- U = ( R |`s S ) |
||
| evlsmaprhm.b | |- B = ( Base ` P ) |
||
| evlsmaprhm.k | |- K = ( Base ` R ) |
||
| evlsmaprhm.f | |- F = ( p e. B |-> ( ( Q ` p ) ` A ) ) |
||
| evlsmaprhm.i | |- ( ph -> I e. V ) |
||
| evlsmaprhm.r | |- ( ph -> R e. CRing ) |
||
| evlsmaprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
||
| evlsmaprhm.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| Assertion | evlsmaprhm | |- ( ph -> F e. ( P RingHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsmaprhm.q | |- Q = ( ( I evalSub R ) ` S ) |
|
| 2 | evlsmaprhm.p | |- P = ( I mPoly U ) |
|
| 3 | evlsmaprhm.u | |- U = ( R |`s S ) |
|
| 4 | evlsmaprhm.b | |- B = ( Base ` P ) |
|
| 5 | evlsmaprhm.k | |- K = ( Base ` R ) |
|
| 6 | evlsmaprhm.f | |- F = ( p e. B |-> ( ( Q ` p ) ` A ) ) |
|
| 7 | evlsmaprhm.i | |- ( ph -> I e. V ) |
|
| 8 | evlsmaprhm.r | |- ( ph -> R e. CRing ) |
|
| 9 | evlsmaprhm.s | |- ( ph -> S e. ( SubRing ` R ) ) |
|
| 10 | evlsmaprhm.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 11 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 12 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 13 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 14 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 15 | 3 | subrgring | |- ( S e. ( SubRing ` R ) -> U e. Ring ) |
| 16 | 9 15 | syl | |- ( ph -> U e. Ring ) |
| 17 | 2 7 16 | mplringd | |- ( ph -> P e. Ring ) |
| 18 | 8 | crngringd | |- ( ph -> R e. Ring ) |
| 19 | fveq2 | |- ( p = ( 1r ` P ) -> ( Q ` p ) = ( Q ` ( 1r ` P ) ) ) |
|
| 20 | 19 | fveq1d | |- ( p = ( 1r ` P ) -> ( ( Q ` p ) ` A ) = ( ( Q ` ( 1r ` P ) ) ` A ) ) |
| 21 | 4 11 | ringidcl | |- ( P e. Ring -> ( 1r ` P ) e. B ) |
| 22 | 17 21 | syl | |- ( ph -> ( 1r ` P ) e. B ) |
| 23 | fvexd | |- ( ph -> ( ( Q ` ( 1r ` P ) ) ` A ) e. _V ) |
|
| 24 | 6 20 22 23 | fvmptd3 | |- ( ph -> ( F ` ( 1r ` P ) ) = ( ( Q ` ( 1r ` P ) ) ` A ) ) |
| 25 | eqid | |- ( algSc ` P ) = ( algSc ` P ) |
|
| 26 | eqid | |- ( 1r ` U ) = ( 1r ` U ) |
|
| 27 | 2 25 26 11 7 16 | mplascl1 | |- ( ph -> ( ( algSc ` P ) ` ( 1r ` U ) ) = ( 1r ` P ) ) |
| 28 | 27 | eqcomd | |- ( ph -> ( 1r ` P ) = ( ( algSc ` P ) ` ( 1r ` U ) ) ) |
| 29 | 28 | fveq2d | |- ( ph -> ( Q ` ( 1r ` P ) ) = ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ) |
| 30 | 29 | fveq1d | |- ( ph -> ( ( Q ` ( 1r ` P ) ) ` A ) = ( ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ` A ) ) |
| 31 | 3 12 | subrg1 | |- ( S e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` U ) ) |
| 32 | 9 31 | syl | |- ( ph -> ( 1r ` R ) = ( 1r ` U ) ) |
| 33 | 12 | subrg1cl | |- ( S e. ( SubRing ` R ) -> ( 1r ` R ) e. S ) |
| 34 | 9 33 | syl | |- ( ph -> ( 1r ` R ) e. S ) |
| 35 | 32 34 | eqeltrrd | |- ( ph -> ( 1r ` U ) e. S ) |
| 36 | 1 2 3 5 4 25 7 8 9 35 10 | evlsscaval | |- ( ph -> ( ( ( algSc ` P ) ` ( 1r ` U ) ) e. B /\ ( ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ` A ) = ( 1r ` U ) ) ) |
| 37 | 36 | simprd | |- ( ph -> ( ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ` A ) = ( 1r ` U ) ) |
| 38 | 37 32 | eqtr4d | |- ( ph -> ( ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ` A ) = ( 1r ` R ) ) |
| 39 | 24 30 38 | 3eqtrd | |- ( ph -> ( F ` ( 1r ` P ) ) = ( 1r ` R ) ) |
| 40 | 7 | adantr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> I e. V ) |
| 41 | 8 | adantr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> R e. CRing ) |
| 42 | 9 | adantr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> S e. ( SubRing ` R ) ) |
| 43 | 10 | adantr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> A e. ( K ^m I ) ) |
| 44 | simprl | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> q e. B ) |
|
| 45 | eqidd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` q ) ` A ) = ( ( Q ` q ) ` A ) ) |
|
| 46 | 44 45 | jca | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q e. B /\ ( ( Q ` q ) ` A ) = ( ( Q ` q ) ` A ) ) ) |
| 47 | simprr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> r e. B ) |
|
| 48 | eqidd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` r ) ` A ) = ( ( Q ` r ) ` A ) ) |
|
| 49 | 47 48 | jca | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( r e. B /\ ( ( Q ` r ) ` A ) = ( ( Q ` r ) ` A ) ) ) |
| 50 | 1 2 3 5 4 40 41 42 43 46 49 13 14 | evlsmulval | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( .r ` P ) r ) e. B /\ ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) = ( ( ( Q ` q ) ` A ) ( .r ` R ) ( ( Q ` r ) ` A ) ) ) ) |
| 51 | 50 | simprd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) = ( ( ( Q ` q ) ` A ) ( .r ` R ) ( ( Q ` r ) ` A ) ) ) |
| 52 | fveq2 | |- ( p = ( q ( .r ` P ) r ) -> ( Q ` p ) = ( Q ` ( q ( .r ` P ) r ) ) ) |
|
| 53 | 52 | fveq1d | |- ( p = ( q ( .r ` P ) r ) -> ( ( Q ` p ) ` A ) = ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) ) |
| 54 | 17 | adantr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> P e. Ring ) |
| 55 | 4 13 54 44 47 | ringcld | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ( .r ` P ) r ) e. B ) |
| 56 | fvexd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) e. _V ) |
|
| 57 | 6 53 55 56 | fvmptd3 | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) ) |
| 58 | fveq2 | |- ( p = q -> ( Q ` p ) = ( Q ` q ) ) |
|
| 59 | 58 | fveq1d | |- ( p = q -> ( ( Q ` p ) ` A ) = ( ( Q ` q ) ` A ) ) |
| 60 | fvexd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` q ) ` A ) e. _V ) |
|
| 61 | 6 59 44 60 | fvmptd3 | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` q ) = ( ( Q ` q ) ` A ) ) |
| 62 | fveq2 | |- ( p = r -> ( Q ` p ) = ( Q ` r ) ) |
|
| 63 | 62 | fveq1d | |- ( p = r -> ( ( Q ` p ) ` A ) = ( ( Q ` r ) ` A ) ) |
| 64 | fvexd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` r ) ` A ) e. _V ) |
|
| 65 | 6 63 47 64 | fvmptd3 | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` r ) = ( ( Q ` r ) ` A ) ) |
| 66 | 61 65 | oveq12d | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( F ` q ) ( .r ` R ) ( F ` r ) ) = ( ( ( Q ` q ) ` A ) ( .r ` R ) ( ( Q ` r ) ` A ) ) ) |
| 67 | 51 57 66 | 3eqtr4d | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( F ` q ) ( .r ` R ) ( F ` r ) ) ) |
| 68 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 69 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 70 | 7 | adantr | |- ( ( ph /\ p e. B ) -> I e. V ) |
| 71 | 8 | adantr | |- ( ( ph /\ p e. B ) -> R e. CRing ) |
| 72 | 9 | adantr | |- ( ( ph /\ p e. B ) -> S e. ( SubRing ` R ) ) |
| 73 | simpr | |- ( ( ph /\ p e. B ) -> p e. B ) |
|
| 74 | 10 | adantr | |- ( ( ph /\ p e. B ) -> A e. ( K ^m I ) ) |
| 75 | 1 2 3 4 5 70 71 72 73 74 | evlscl | |- ( ( ph /\ p e. B ) -> ( ( Q ` p ) ` A ) e. K ) |
| 76 | 75 6 | fmptd | |- ( ph -> F : B --> K ) |
| 77 | 1 2 3 5 4 40 41 42 43 46 49 68 69 | evlsaddval | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( +g ` P ) r ) e. B /\ ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) = ( ( ( Q ` q ) ` A ) ( +g ` R ) ( ( Q ` r ) ` A ) ) ) ) |
| 78 | 77 | simprd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) = ( ( ( Q ` q ) ` A ) ( +g ` R ) ( ( Q ` r ) ` A ) ) ) |
| 79 | fveq2 | |- ( p = ( q ( +g ` P ) r ) -> ( Q ` p ) = ( Q ` ( q ( +g ` P ) r ) ) ) |
|
| 80 | 79 | fveq1d | |- ( p = ( q ( +g ` P ) r ) -> ( ( Q ` p ) ` A ) = ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) ) |
| 81 | 17 | ringgrpd | |- ( ph -> P e. Grp ) |
| 82 | 81 | adantr | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> P e. Grp ) |
| 83 | 4 68 82 44 47 | grpcld | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ( +g ` P ) r ) e. B ) |
| 84 | fvexd | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) e. _V ) |
|
| 85 | 6 80 83 84 | fvmptd3 | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) ) |
| 86 | 61 65 | oveq12d | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( F ` q ) ( +g ` R ) ( F ` r ) ) = ( ( ( Q ` q ) ` A ) ( +g ` R ) ( ( Q ` r ) ` A ) ) ) |
| 87 | 78 85 86 | 3eqtr4d | |- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( F ` q ) ( +g ` R ) ( F ` r ) ) ) |
| 88 | 4 11 12 13 14 17 18 39 67 5 68 69 76 87 | isrhmd | |- ( ph -> F e. ( P RingHom R ) ) |