This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsaddval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsaddval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsaddval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsaddval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsaddval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsaddval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | ||
| evlsaddval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsaddval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsaddval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| evlsaddval.m | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) | ||
| evlsaddval.n | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) ) | ||
| evlsaddval.g | ⊢ ✚ = ( +g ‘ 𝑃 ) | ||
| evlsaddval.f | ⊢ + = ( +g ‘ 𝑆 ) | ||
| Assertion | evlsaddval | ⊢ ( 𝜑 → ( ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsaddval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsaddval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsaddval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evlsaddval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 5 | evlsaddval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 6 | evlsaddval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | |
| 7 | evlsaddval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 8 | evlsaddval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 9 | evlsaddval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 10 | evlsaddval.m | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) | |
| 11 | evlsaddval.n | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) ) | |
| 12 | evlsaddval.g | ⊢ ✚ = ( +g ‘ 𝑃 ) | |
| 13 | evlsaddval.f | ⊢ + = ( +g ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 15 | 1 2 3 14 4 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 16 | 6 7 8 15 | syl3anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 17 | rhmghm | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 19 | ghmgrp1 | ⊢ ( 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑃 ∈ Grp ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 21 | 10 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 22 | 11 | simpld | ⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
| 23 | 5 12 | grpcl | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) → ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ) |
| 24 | 20 21 22 23 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ) |
| 25 | eqid | ⊢ ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 26 | 5 12 25 | ghmlin | ⊢ ( ( 𝑄 ∈ ( 𝑃 GrpHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵 ) → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
| 27 | 18 21 22 26 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) ) |
| 28 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 29 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 30 | 5 28 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 31 | 16 30 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 32 | 31 21 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 33 | 31 22 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 34 | 14 28 7 29 32 33 13 25 | pwsplusgval | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ( +g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑄 ‘ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ) |
| 35 | 27 34 | eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ) |
| 36 | 35 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) ) |
| 37 | 14 4 28 7 29 32 | pwselbas | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 38 | 37 | ffnd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 39 | 14 4 28 7 29 33 | pwselbas | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 40 | 39 | ffnd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 41 | fnfvof | ⊢ ( ( ( ( 𝑄 ‘ 𝑀 ) Fn ( 𝐾 ↑m 𝐼 ) ∧ ( 𝑄 ‘ 𝑁 ) Fn ( 𝐾 ↑m 𝐼 ) ) ∧ ( ( 𝐾 ↑m 𝐼 ) ∈ V ∧ 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) ) → ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) | |
| 42 | 38 40 29 9 41 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ∘f + ( 𝑄 ‘ 𝑁 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) ) |
| 43 | 10 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) |
| 44 | 11 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) = 𝑊 ) |
| 45 | 43 44 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) + ( ( 𝑄 ‘ 𝑁 ) ‘ 𝐴 ) ) = ( 𝑉 + 𝑊 ) ) |
| 46 | 36 42 45 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) |
| 47 | 24 46 | jca | ⊢ ( 𝜑 → ( ( 𝑀 ✚ 𝑁 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝐴 ) = ( 𝑉 + 𝑊 ) ) ) |