This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsevl.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsevl.o | ⊢ 𝑂 = ( 𝐼 eval 𝑆 ) | ||
| evlsevl.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsevl.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsevl.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evlsevl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsevl.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsevl.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsevl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| Assertion | evlsevl | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsevl.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsevl.o | ⊢ 𝑂 = ( 𝐼 eval 𝑆 ) | |
| 3 | evlsevl.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 4 | evlsevl.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evlsevl.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 6 | evlsevl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 7 | evlsevl.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 8 | evlsevl.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 9 | evlsevl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 11 | sneq | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → { 𝑥 } = { ( 𝐹 ‘ 𝑏 ) } ) | |
| 12 | 11 | xpeq2d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 14 | eqid | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 15 | 3 13 5 14 9 | mplelf | ⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑏 ) ∈ ( Base ‘ 𝑈 ) ) |
| 17 | 4 | subrgbas | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 18 | 8 17 | syl | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 20 | 16 19 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑅 ) |
| 21 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ∈ V ) | |
| 22 | snex | ⊢ { ( 𝐹 ‘ 𝑏 ) } ∈ V | |
| 23 | 22 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { ( 𝐹 ‘ 𝑏 ) } ∈ V ) |
| 24 | 21 23 | xpexd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∈ V ) |
| 25 | 10 12 20 24 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
| 26 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 27 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 28 | 27 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
| 29 | 8 28 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
| 31 | 30 20 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
| 32 | 26 12 31 24 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
| 33 | 25 32 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) = ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) |
| 35 | 34 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) = ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) |
| 36 | 35 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) = ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
| 37 | eqid | ⊢ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) | |
| 38 | eqid | ⊢ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) | |
| 39 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) | |
| 40 | eqid | ⊢ ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) | |
| 41 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) | |
| 42 | 1 3 5 14 27 4 37 38 39 40 10 41 6 7 8 9 | evlsvval | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
| 43 | 2 27 | evlval | ⊢ 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) |
| 44 | 43 | fveq1i | ⊢ ( 𝑂 ‘ 𝐹 ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) ‘ 𝐹 ) |
| 45 | eqid | ⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) = ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) | |
| 46 | eqid | ⊢ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) = ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) | |
| 47 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) ) | |
| 48 | eqid | ⊢ ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) | |
| 49 | 7 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 50 | 27 | subrgid | ⊢ ( 𝑆 ∈ Ring → ( Base ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| 51 | 49 50 | syl | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑆 ) ) |
| 52 | eqid | ⊢ ( 𝐼 mPoly 𝑆 ) = ( 𝐼 mPoly 𝑆 ) | |
| 53 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) | |
| 54 | 3 4 5 52 53 6 8 9 | mplsubrgcl | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
| 55 | 27 | ressid | ⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
| 56 | 7 55 | syl | ⊢ ( 𝜑 → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
| 57 | 56 | oveq2d | ⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) = ( 𝐼 mPoly 𝑆 ) ) |
| 58 | 57 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
| 59 | 54 58 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) ) ) |
| 60 | 45 46 47 14 27 48 37 38 39 40 26 41 6 7 51 59 | evlsvval | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) ‘ 𝐹 ) = ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
| 61 | 44 60 | eqtrid | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) = ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
| 62 | 36 42 61 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) |