This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for a scalar. Compare evl1scad . Note that scalar multiplication by X is the same as vector multiplication by ( AX ) by asclmul1 . (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsscaval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsscaval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsscaval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsscaval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsscaval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsscaval.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| evlsscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsscaval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsscaval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsscaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | ||
| evlsscaval.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlsscaval | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsscaval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsscaval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsscaval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evlsscaval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 5 | evlsscaval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 6 | evlsscaval.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 7 | evlsscaval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 8 | evlsscaval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 9 | evlsscaval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 10 | evlsscaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | |
| 11 | evlsscaval.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 13 | 3 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 14 | 9 13 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 15 | 2 5 12 6 7 14 | mplasclf | ⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝑈 ) ⟶ 𝐵 ) |
| 16 | 3 | subrgbas | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 17 | 9 16 | syl | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 18 | 10 17 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑈 ) ) |
| 19 | 15 18 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) |
| 20 | 1 2 3 4 6 7 8 9 10 | evlssca | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐾 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 21 | 20 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = ( ( ( 𝐾 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) ) |
| 22 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝐿 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( ( 𝐾 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 ) | |
| 23 | 10 11 22 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐾 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 ) |
| 24 | 21 23 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = 𝑋 ) |
| 25 | 19 24 | jca | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = 𝑋 ) ) |