This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmpropd.a | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) | |
| rhmpropd.b | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) | ||
| rhmpropd.c | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| rhmpropd.d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) | ||
| rhmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| rhmpropd.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | ||
| rhmpropd.g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| rhmpropd.h | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑀 ) 𝑦 ) ) | ||
| Assertion | rhmpropd | ⊢ ( 𝜑 → ( 𝐽 RingHom 𝐾 ) = ( 𝐿 RingHom 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpropd.a | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐽 ) ) | |
| 2 | rhmpropd.b | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝐾 ) ) | |
| 3 | rhmpropd.c | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 4 | rhmpropd.d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑀 ) ) | |
| 5 | rhmpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 6 | rhmpropd.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 7 | rhmpropd.g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 8 | rhmpropd.h | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑀 ) 𝑦 ) ) | |
| 9 | 1 3 5 7 | ringpropd | ⊢ ( 𝜑 → ( 𝐽 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
| 10 | 2 4 6 8 | ringpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝑀 ∈ Ring ) ) |
| 11 | 9 10 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐽 ∈ Ring ∧ 𝐾 ∈ Ring ) ↔ ( 𝐿 ∈ Ring ∧ 𝑀 ∈ Ring ) ) ) |
| 12 | 1 2 3 4 5 6 | ghmpropd | ⊢ ( 𝜑 → ( 𝐽 GrpHom 𝐾 ) = ( 𝐿 GrpHom 𝑀 ) ) |
| 13 | 12 | eleq2d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ) ) |
| 14 | eqid | ⊢ ( mulGrp ‘ 𝐽 ) = ( mulGrp ‘ 𝐽 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) | |
| 16 | 14 15 | mgpbas | ⊢ ( Base ‘ 𝐽 ) = ( Base ‘ ( mulGrp ‘ 𝐽 ) ) |
| 17 | 1 16 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐽 ) ) ) |
| 18 | eqid | ⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) | |
| 19 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 20 | 18 19 | mgpbas | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 21 | 2 20 | eqtrdi | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 22 | eqid | ⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ 𝐿 ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 24 | 22 23 | mgpbas | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) |
| 25 | 3 24 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) ) |
| 26 | eqid | ⊢ ( mulGrp ‘ 𝑀 ) = ( mulGrp ‘ 𝑀 ) | |
| 27 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 28 | 26 27 | mgpbas | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( mulGrp ‘ 𝑀 ) ) |
| 29 | 4 28 | eqtrdi | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( mulGrp ‘ 𝑀 ) ) ) |
| 30 | eqid | ⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) | |
| 31 | 14 30 | mgpplusg | ⊢ ( .r ‘ 𝐽 ) = ( +g ‘ ( mulGrp ‘ 𝐽 ) ) |
| 32 | 31 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐽 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐽 ) ) 𝑦 ) |
| 33 | eqid | ⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) | |
| 34 | 22 33 | mgpplusg | ⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( mulGrp ‘ 𝐿 ) ) |
| 35 | 34 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) |
| 36 | 7 32 35 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐽 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) ) |
| 37 | eqid | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) | |
| 38 | 18 37 | mgpplusg | ⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 39 | 38 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) |
| 40 | eqid | ⊢ ( .r ‘ 𝑀 ) = ( .r ‘ 𝑀 ) | |
| 41 | 26 40 | mgpplusg | ⊢ ( .r ‘ 𝑀 ) = ( +g ‘ ( mulGrp ‘ 𝑀 ) ) |
| 42 | 41 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑦 ) |
| 43 | 8 39 42 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑀 ) ) 𝑦 ) ) |
| 44 | 17 21 25 29 36 43 | mhmpropd | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) = ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) |
| 45 | 44 | eleq2d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) ↔ 𝑓 ∈ ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) ) |
| 46 | 13 45 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) ) ↔ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) ) ) |
| 47 | 11 46 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝐽 ∈ Ring ∧ 𝐾 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) ) ) ↔ ( ( 𝐿 ∈ Ring ∧ 𝑀 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) ) ) ) |
| 48 | 14 18 | isrhm | ⊢ ( 𝑓 ∈ ( 𝐽 RingHom 𝐾 ) ↔ ( ( 𝐽 ∈ Ring ∧ 𝐾 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝐽 GrpHom 𝐾 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐽 ) MndHom ( mulGrp ‘ 𝐾 ) ) ) ) ) |
| 49 | 22 26 | isrhm | ⊢ ( 𝑓 ∈ ( 𝐿 RingHom 𝑀 ) ↔ ( ( 𝐿 ∈ Ring ∧ 𝑀 ∈ Ring ) ∧ ( 𝑓 ∈ ( 𝐿 GrpHom 𝑀 ) ∧ 𝑓 ∈ ( ( mulGrp ‘ 𝐿 ) MndHom ( mulGrp ‘ 𝑀 ) ) ) ) ) |
| 50 | 47 48 49 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐽 RingHom 𝐾 ) ↔ 𝑓 ∈ ( 𝐿 RingHom 𝑀 ) ) ) |
| 51 | 50 | eqrdv | ⊢ ( 𝜑 → ( 𝐽 RingHom 𝐾 ) = ( 𝐿 RingHom 𝑀 ) ) |