This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evl1rhm and evls1rhm (formerly part of the proof of evl1rhm ): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1rhmlem.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| evl1rhmlem.t | ⊢ 𝑇 = ( 𝑅 ↑s 𝐵 ) | ||
| evl1rhmlem.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) | ||
| Assertion | evls1rhmlem | ⊢ ( 𝑅 ∈ CRing → 𝐹 ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1rhmlem.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | evl1rhmlem.t | ⊢ 𝑇 = ( 𝑅 ↑s 𝐵 ) | |
| 3 | evl1rhmlem.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) | |
| 4 | ovex | ⊢ ( 𝐵 ↑m 1o ) ∈ V | |
| 5 | eqid | ⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) | |
| 6 | 5 1 | pwsbas | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐵 ↑m 1o ) ∈ V ) → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 7 | 4 6 | mpan2 | ⊢ ( 𝑅 ∈ CRing → ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 8 | 7 | mpteq1d | ⊢ ( 𝑅 ∈ CRing → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
| 9 | 3 8 | eqtrid | ⊢ ( 𝑅 ∈ CRing → 𝐹 = ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
| 10 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) | |
| 11 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 12 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 13 | 12 | a1i | ⊢ ( 𝑅 ∈ CRing → 𝐵 ∈ V ) |
| 14 | 4 | a1i | ⊢ ( 𝑅 ∈ CRing → ( 𝐵 ↑m 1o ) ∈ V ) |
| 15 | df1o2 | ⊢ 1o = { ∅ } | |
| 16 | 0ex | ⊢ ∅ ∈ V | |
| 17 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) | |
| 18 | 15 12 16 17 | mapsnf1o3 | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) |
| 19 | f1of | ⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 1o ) → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) | |
| 20 | 18 19 | mp1i | ⊢ ( 𝑅 ∈ CRing → ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵 ↑m 1o ) ) |
| 21 | 2 5 10 11 13 14 20 | pwsco1rhm | ⊢ ( 𝑅 ∈ CRing → ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |
| 22 | 9 21 | eqeltrd | ⊢ ( 𝑅 ∈ CRing → 𝐹 ∈ ( ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |