This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmco | ⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 RingHom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) → 𝑈 ∈ Ring ) | |
| 2 | rhmrcl1 | ⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑆 ∈ Ring ) | |
| 3 | 1 2 | anim12ci | ⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ) |
| 4 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) → 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ) | |
| 5 | rhmghm | ⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 6 | ghmco | ⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| 8 | eqid | ⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) | |
| 9 | eqid | ⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) | |
| 10 | 8 9 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑇 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 11 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 12 | 11 8 | rhmmhm | ⊢ ( 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 13 | mhmco | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑇 ) MndHom ( mulGrp ‘ 𝑈 ) ) ∧ 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) | |
| 14 | 10 12 13 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) |
| 15 | 7 14 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) |
| 16 | 11 9 | isrhm | ⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 RingHom 𝑈 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑈 ∈ Ring ) ∧ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑈 ) ) ) ) ) |
| 17 | 3 15 16 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑇 RingHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RingHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 RingHom 𝑈 ) ) |