This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | evennn2n | ⊢ ( 𝑁 ∈ ℕ → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( 2 · 𝑛 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( ( 2 · 𝑛 ) ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) | |
| 2 | simpr | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) | |
| 3 | 2re | ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 2 ∈ ℝ ) |
| 5 | zre | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
| 7 | 0le2 | ⊢ 0 ≤ 2 | |
| 8 | 7 | a1i | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 0 ≤ 2 ) |
| 9 | nngt0 | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ → 0 < ( 2 · 𝑛 ) ) | |
| 10 | 9 | adantr | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 0 < ( 2 · 𝑛 ) ) |
| 11 | prodgt0 | ⊢ ( ( ( 2 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 0 ≤ 2 ∧ 0 < ( 2 · 𝑛 ) ) ) → 0 < 𝑛 ) | |
| 12 | 4 6 8 10 11 | syl22anc | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 0 < 𝑛 ) |
| 13 | elnnz | ⊢ ( 𝑛 ∈ ℕ ↔ ( 𝑛 ∈ ℤ ∧ 0 < 𝑛 ) ) | |
| 14 | 2 12 13 | sylanbrc | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℕ ) |
| 15 | 14 | ex | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ ) ) |
| 16 | 1 15 | biimtrrdi | ⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ ) ) ) |
| 17 | 16 | com13 | ⊢ ( 𝑛 ∈ ℤ → ( 𝑁 ∈ ℕ → ( ( 2 · 𝑛 ) = 𝑁 → 𝑛 ∈ ℕ ) ) ) |
| 18 | 17 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = 𝑁 → 𝑛 ∈ ℕ ) ) |
| 19 | 18 | pm4.71rd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = 𝑁 ↔ ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
| 20 | 19 | bicomd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ↔ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 21 | 20 | rexbidva | ⊢ ( 𝑁 ∈ ℕ → ( ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 22 | nnssz | ⊢ ℕ ⊆ ℤ | |
| 23 | rexss | ⊢ ( ℕ ⊆ ℤ → ( ∃ 𝑛 ∈ ℕ ( 2 · 𝑛 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) | |
| 24 | 22 23 | mp1i | ⊢ ( 𝑁 ∈ ℕ → ( ∃ 𝑛 ∈ ℕ ( 2 · 𝑛 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
| 25 | even2n | ⊢ ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) | |
| 26 | 25 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 27 | 21 24 26 | 3bitr4rd | ⊢ ( 𝑁 ∈ ℕ → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( 2 · 𝑛 ) = 𝑁 ) ) |