This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2tp1odd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 = ( ( 2 · 𝐴 ) + 1 ) ) → ¬ 2 ∥ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ ) | |
| 2 | oveq2 | ⊢ ( 𝑘 = 𝐴 → ( 2 · 𝑘 ) = ( 2 · 𝐴 ) ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝑘 = 𝐴 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) |
| 4 | 3 | eqeq1d | ⊢ ( 𝑘 = 𝐴 → ( ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ↔ ( ( 2 · 𝐴 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 = 𝐴 ) → ( ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ↔ ( ( 2 · 𝐴 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) ) |
| 6 | eqidd | ⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) | |
| 7 | 1 5 6 | rspcedvd | ⊢ ( 𝐴 ∈ ℤ → ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) |
| 8 | 2z | ⊢ 2 ∈ ℤ | |
| 9 | 8 | a1i | ⊢ ( 𝐴 ∈ ℤ → 2 ∈ ℤ ) |
| 10 | 9 1 | zmulcld | ⊢ ( 𝐴 ∈ ℤ → ( 2 · 𝐴 ) ∈ ℤ ) |
| 11 | 10 | peano2zd | ⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) + 1 ) ∈ ℤ ) |
| 12 | odd2np1 | ⊢ ( ( ( 2 · 𝐴 ) + 1 ) ∈ ℤ → ( ¬ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ∈ ℤ → ( ¬ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝐴 ) + 1 ) ) ) |
| 14 | 7 13 | mpbird | ⊢ ( 𝐴 ∈ ℤ → ¬ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 = ( ( 2 · 𝐴 ) + 1 ) ) → ¬ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ) |
| 16 | breq2 | ⊢ ( 𝐵 = ( ( 2 · 𝐴 ) + 1 ) → ( 2 ∥ 𝐵 ↔ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 = ( ( 2 · 𝐴 ) + 1 ) ) → ( 2 ∥ 𝐵 ↔ 2 ∥ ( ( 2 · 𝐴 ) + 1 ) ) ) |
| 18 | 15 17 | mtbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 = ( ( 2 · 𝐴 ) + 1 ) ) → ¬ 2 ∥ 𝐵 ) |