This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | evennn2n | |- ( N e. NN -> ( 2 || N <-> E. n e. NN ( 2 x. n ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( ( 2 x. n ) = N -> ( ( 2 x. n ) e. NN <-> N e. NN ) ) |
|
| 2 | simpr | |- ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> n e. ZZ ) |
|
| 3 | 2re | |- 2 e. RR |
|
| 4 | 3 | a1i | |- ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> 2 e. RR ) |
| 5 | zre | |- ( n e. ZZ -> n e. RR ) |
|
| 6 | 5 | adantl | |- ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> n e. RR ) |
| 7 | 0le2 | |- 0 <_ 2 |
|
| 8 | 7 | a1i | |- ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> 0 <_ 2 ) |
| 9 | nngt0 | |- ( ( 2 x. n ) e. NN -> 0 < ( 2 x. n ) ) |
|
| 10 | 9 | adantr | |- ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> 0 < ( 2 x. n ) ) |
| 11 | prodgt0 | |- ( ( ( 2 e. RR /\ n e. RR ) /\ ( 0 <_ 2 /\ 0 < ( 2 x. n ) ) ) -> 0 < n ) |
|
| 12 | 4 6 8 10 11 | syl22anc | |- ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> 0 < n ) |
| 13 | elnnz | |- ( n e. NN <-> ( n e. ZZ /\ 0 < n ) ) |
|
| 14 | 2 12 13 | sylanbrc | |- ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> n e. NN ) |
| 15 | 14 | ex | |- ( ( 2 x. n ) e. NN -> ( n e. ZZ -> n e. NN ) ) |
| 16 | 1 15 | biimtrrdi | |- ( ( 2 x. n ) = N -> ( N e. NN -> ( n e. ZZ -> n e. NN ) ) ) |
| 17 | 16 | com13 | |- ( n e. ZZ -> ( N e. NN -> ( ( 2 x. n ) = N -> n e. NN ) ) ) |
| 18 | 17 | impcom | |- ( ( N e. NN /\ n e. ZZ ) -> ( ( 2 x. n ) = N -> n e. NN ) ) |
| 19 | 18 | pm4.71rd | |- ( ( N e. NN /\ n e. ZZ ) -> ( ( 2 x. n ) = N <-> ( n e. NN /\ ( 2 x. n ) = N ) ) ) |
| 20 | 19 | bicomd | |- ( ( N e. NN /\ n e. ZZ ) -> ( ( n e. NN /\ ( 2 x. n ) = N ) <-> ( 2 x. n ) = N ) ) |
| 21 | 20 | rexbidva | |- ( N e. NN -> ( E. n e. ZZ ( n e. NN /\ ( 2 x. n ) = N ) <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 22 | nnssz | |- NN C_ ZZ |
|
| 23 | rexss | |- ( NN C_ ZZ -> ( E. n e. NN ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN /\ ( 2 x. n ) = N ) ) ) |
|
| 24 | 22 23 | mp1i | |- ( N e. NN -> ( E. n e. NN ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN /\ ( 2 x. n ) = N ) ) ) |
| 25 | even2n | |- ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) |
|
| 26 | 25 | a1i | |- ( N e. NN -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 27 | 21 24 26 | 3bitr4rd | |- ( N e. NN -> ( 2 || N <-> E. n e. NN ( 2 x. n ) = N ) ) |