This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2lem3 , formerly part of proof of eupth2lem3 : If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 25-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | ||
| trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | ||
| trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | ||
| trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | ||
| trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | ||
| eupth2lem3.o | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) | ||
| eupth2lem3lem3.e | ⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | ||
| eupth2lem3lem4.i | ⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ 𝒫 𝑉 ) | ||
| Assertion | eupth2lem3lem4 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 7 | trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | |
| 8 | trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | |
| 9 | trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | |
| 10 | trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 11 | trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | |
| 12 | trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | |
| 13 | eupth2lem3.o | ⊢ ( 𝜑 → { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } = if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) | |
| 14 | eupth2lem3lem3.e | ⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | |
| 15 | eupth2lem3lem4.i | ⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ 𝒫 𝑉 ) | |
| 16 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) | |
| 17 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → 𝑈 ∈ 𝑉 ) |
| 18 | 1 2 3 4 5 6 | trlsegvdeglem1 | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) |
| 19 | 18 | simprd | ⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) |
| 21 | neeq1 | ⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 22 | 21 | biimpcd | ⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → 𝑈 ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) |
| 25 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ 𝒫 𝑉 ) |
| 26 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 27 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 28 | df-ne | ⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ ¬ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) | |
| 29 | ifpfal | ⊢ ( ¬ ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) | |
| 30 | 28 29 | sylbi | ⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 32 | preq1 | ⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } = { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) | |
| 33 | 32 | sseq1d | ⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → ( { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ↔ { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 34 | 33 | biimpcd | ⊢ ( { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 35 | 31 34 | biimtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 36 | 27 35 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 37 | 36 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → { 𝑈 , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 38 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 39 | 16 17 20 24 25 26 37 38 | 1hegrvtxdg1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 1 ) |
| 40 | 39 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) |
| 41 | 40 | breq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 42 | 41 | notbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 43 | 1 2 3 4 5 6 7 8 9 10 11 12 | eupth2lem3lem1 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℕ0 ) |
| 44 | 43 | nn0zd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ) |
| 45 | 2nn | ⊢ 2 ∈ ℕ | |
| 46 | 45 | a1i | ⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 47 | 1lt2 | ⊢ 1 < 2 | |
| 48 | 47 | a1i | ⊢ ( 𝜑 → 1 < 2 ) |
| 49 | ndvdsp1 | ⊢ ( ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2 ) → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) → ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) | |
| 50 | 44 46 48 49 | syl3anc | ⊢ ( 𝜑 → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) → ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 51 | 50 | con2d | ⊢ ( 𝜑 → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) → ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 52 | 1z | ⊢ 1 ∈ ℤ | |
| 53 | n2dvds1 | ⊢ ¬ 2 ∥ 1 | |
| 54 | opoe | ⊢ ( ( ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ∧ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ∧ ( 1 ∈ ℤ ∧ ¬ 2 ∥ 1 ) ) → 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) | |
| 55 | 52 53 54 | mpanr12 | ⊢ ( ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ ∧ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) → 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) |
| 56 | 55 | ex | ⊢ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ∈ ℤ → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) → 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 57 | 44 56 | syl | ⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) → 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 58 | 51 57 | impbid | ⊢ ( 𝜑 → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 59 | fveq2 | ⊢ ( 𝑥 = 𝑈 → ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) = ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) | |
| 60 | 59 | breq2d | ⊢ ( 𝑥 = 𝑈 → ( 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 61 | 60 | notbid | ⊢ ( 𝑥 = 𝑈 → ( ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 62 | 61 | elrab3 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 63 | 5 62 | syl | ⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) ) ) |
| 64 | 13 | eleq2d | ⊢ ( 𝜑 → ( 𝑈 ∈ { 𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑥 ) } ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 65 | 58 63 64 | 3bitr2d | ⊢ ( 𝜑 → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 66 | 65 | notbid | ⊢ ( 𝜑 → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 68 | fvex | ⊢ ( 𝑃 ‘ 𝑁 ) ∈ V | |
| 69 | 68 | eupth2lem2 | ⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 70 | 69 | adantll | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 71 | 42 67 70 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ 𝑁 ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 72 | 71 | expcom | ⊢ ( ( 𝑃 ‘ 𝑁 ) = 𝑈 → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 73 | 72 | eqcoms | ⊢ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 74 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 𝐹 ‘ 𝑁 ) ∈ V ) | |
| 75 | 18 | simpld | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
| 76 | 75 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
| 77 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → 𝑈 ∈ 𝑉 ) |
| 78 | neeq2 | ⊢ ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ 𝑁 ) ≠ 𝑈 ) ) | |
| 79 | 78 | biimpcd | ⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( 𝑃 ‘ 𝑁 ) ≠ 𝑈 ) ) |
| 80 | 79 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( 𝑃 ‘ 𝑁 ) ≠ 𝑈 ) ) |
| 81 | 80 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 𝑃 ‘ 𝑁 ) ≠ 𝑈 ) |
| 82 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ∈ 𝒫 𝑉 ) |
| 83 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 84 | preq2 | ⊢ ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } = { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ) | |
| 85 | 84 | sseq1d | ⊢ ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ↔ { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 86 | 85 | biimpcd | ⊢ ( { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 87 | 31 86 | biimtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑁 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) = { ( 𝑃 ‘ 𝑁 ) } , { ( 𝑃 ‘ 𝑁 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 88 | 27 87 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 89 | 88 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → { ( 𝑃 ‘ 𝑁 ) , 𝑈 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) ) |
| 90 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( Vtx ‘ 𝑌 ) = 𝑉 ) |
| 91 | 74 76 77 81 82 83 89 90 | 1hegrvtxdg1r | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) = 1 ) |
| 92 | 91 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) |
| 93 | 92 | breq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 94 | 93 | notbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ) ) |
| 95 | 66 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + 1 ) ↔ ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 96 | necom | ⊢ ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ↔ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ≠ ( 𝑃 ‘ 𝑁 ) ) | |
| 97 | fvex | ⊢ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ V | |
| 98 | 97 | eupth2lem2 | ⊢ ( ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) ≠ ( 𝑃 ‘ 𝑁 ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 99 | 96 98 | sylanb | ⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ) ) |
| 100 | 99 | con1bid | ⊢ ( ( ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 101 | 100 | adantll | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑁 ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 𝑁 ) } ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 102 | 94 95 101 | 3bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |
| 103 | 102 | expcom | ⊢ ( ( 𝑃 ‘ ( 𝑁 + 1 ) ) = 𝑈 → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 104 | 103 | eqcoms | ⊢ ( 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 105 | 73 104 | jaoi | ⊢ ( ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 106 | 105 | com12 | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) ) |
| 107 | 106 | 3impia | ⊢ ( ( 𝜑 ∧ ( 𝑃 ‘ 𝑁 ) ≠ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∧ ( 𝑈 = ( 𝑃 ‘ 𝑁 ) ∨ 𝑈 = ( 𝑃 ‘ ( 𝑁 + 1 ) ) ) ) → ( ¬ 2 ∥ ( ( ( VtxDeg ‘ 𝑋 ) ‘ 𝑈 ) + ( ( VtxDeg ‘ 𝑌 ) ‘ 𝑈 ) ) ↔ 𝑈 ∈ if ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( 𝑁 + 1 ) ) , ∅ , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( 𝑁 + 1 ) ) } ) ) ) |