This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2lem3 , formerly part of proof of eupth2lem3 : If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 25-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| trlsegvdeg.i | |- I = ( iEdg ` G ) |
||
| trlsegvdeg.f | |- ( ph -> Fun I ) |
||
| trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| trlsegvdeg.u | |- ( ph -> U e. V ) |
||
| trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
||
| trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
||
| trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
||
| trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
||
| trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
| trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
||
| trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
||
| eupth2lem3.o | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
||
| eupth2lem3lem3.e | |- ( ph -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
||
| eupth2lem3lem4.i | |- ( ph -> ( I ` ( F ` N ) ) e. ~P V ) |
||
| Assertion | eupth2lem3lem4 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| 2 | trlsegvdeg.i | |- I = ( iEdg ` G ) |
|
| 3 | trlsegvdeg.f | |- ( ph -> Fun I ) |
|
| 4 | trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | trlsegvdeg.u | |- ( ph -> U e. V ) |
|
| 6 | trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
|
| 7 | trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
|
| 8 | trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
|
| 9 | trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
|
| 10 | trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 11 | trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
|
| 12 | trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
|
| 13 | eupth2lem3.o | |- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
|
| 14 | eupth2lem3lem3.e | |- ( ph -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
|
| 15 | eupth2lem3lem4.i | |- ( ph -> ( I ` ( F ` N ) ) e. ~P V ) |
|
| 16 | fvexd | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( F ` N ) e. _V ) |
|
| 17 | 5 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> U e. V ) |
| 18 | 1 2 3 4 5 6 | trlsegvdeglem1 | |- ( ph -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) |
| 19 | 18 | simprd | |- ( ph -> ( P ` ( N + 1 ) ) e. V ) |
| 20 | 19 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( P ` ( N + 1 ) ) e. V ) |
| 21 | neeq1 | |- ( ( P ` N ) = U -> ( ( P ` N ) =/= ( P ` ( N + 1 ) ) <-> U =/= ( P ` ( N + 1 ) ) ) ) |
|
| 22 | 21 | biimpcd | |- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( ( P ` N ) = U -> U =/= ( P ` ( N + 1 ) ) ) ) |
| 23 | 22 | adantl | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( P ` N ) = U -> U =/= ( P ` ( N + 1 ) ) ) ) |
| 24 | 23 | imp | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> U =/= ( P ` ( N + 1 ) ) ) |
| 25 | 15 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( I ` ( F ` N ) ) e. ~P V ) |
| 26 | 11 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
| 27 | 14 | adantr | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 28 | df-ne | |- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) <-> -. ( P ` N ) = ( P ` ( N + 1 ) ) ) |
|
| 29 | ifpfal | |- ( -. ( P ` N ) = ( P ` ( N + 1 ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) <-> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
|
| 30 | 28 29 | sylbi | |- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) <-> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 31 | 30 | adantl | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) <-> { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 32 | preq1 | |- ( ( P ` N ) = U -> { ( P ` N ) , ( P ` ( N + 1 ) ) } = { U , ( P ` ( N + 1 ) ) } ) |
|
| 33 | 32 | sseq1d | |- ( ( P ` N ) = U -> ( { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) <-> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 34 | 33 | biimpcd | |- ( { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) -> ( ( P ` N ) = U -> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 35 | 31 34 | biimtrdi | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) -> ( ( P ` N ) = U -> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) ) |
| 36 | 27 35 | mpd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( P ` N ) = U -> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
| 37 | 36 | imp | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> { U , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) |
| 38 | 8 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( Vtx ` Y ) = V ) |
| 39 | 16 17 20 24 25 26 37 38 | 1hegrvtxdg1 | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( ( VtxDeg ` Y ) ` U ) = 1 ) |
| 40 | 39 | oveq2d | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) = ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) |
| 41 | 40 | breq2d | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 42 | 41 | notbid | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 43 | 1 2 3 4 5 6 7 8 9 10 11 12 | eupth2lem3lem1 | |- ( ph -> ( ( VtxDeg ` X ) ` U ) e. NN0 ) |
| 44 | 43 | nn0zd | |- ( ph -> ( ( VtxDeg ` X ) ` U ) e. ZZ ) |
| 45 | 2nn | |- 2 e. NN |
|
| 46 | 45 | a1i | |- ( ph -> 2 e. NN ) |
| 47 | 1lt2 | |- 1 < 2 |
|
| 48 | 47 | a1i | |- ( ph -> 1 < 2 ) |
| 49 | ndvdsp1 | |- ( ( ( ( VtxDeg ` X ) ` U ) e. ZZ /\ 2 e. NN /\ 1 < 2 ) -> ( 2 || ( ( VtxDeg ` X ) ` U ) -> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
|
| 50 | 44 46 48 49 | syl3anc | |- ( ph -> ( 2 || ( ( VtxDeg ` X ) ` U ) -> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 51 | 50 | con2d | |- ( ph -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) -> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 52 | 1z | |- 1 e. ZZ |
|
| 53 | n2dvds1 | |- -. 2 || 1 |
|
| 54 | opoe | |- ( ( ( ( ( VtxDeg ` X ) ` U ) e. ZZ /\ -. 2 || ( ( VtxDeg ` X ) ` U ) ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) |
|
| 55 | 52 53 54 | mpanr12 | |- ( ( ( ( VtxDeg ` X ) ` U ) e. ZZ /\ -. 2 || ( ( VtxDeg ` X ) ` U ) ) -> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) |
| 56 | 55 | ex | |- ( ( ( VtxDeg ` X ) ` U ) e. ZZ -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) -> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 57 | 44 56 | syl | |- ( ph -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) -> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 58 | 51 57 | impbid | |- ( ph -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 59 | fveq2 | |- ( x = U -> ( ( VtxDeg ` X ) ` x ) = ( ( VtxDeg ` X ) ` U ) ) |
|
| 60 | 59 | breq2d | |- ( x = U -> ( 2 || ( ( VtxDeg ` X ) ` x ) <-> 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 61 | 60 | notbid | |- ( x = U -> ( -. 2 || ( ( VtxDeg ` X ) ` x ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 62 | 61 | elrab3 | |- ( U e. V -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 63 | 5 62 | syl | |- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
| 64 | 13 | eleq2d | |- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 65 | 58 63 64 | 3bitr2d | |- ( ph -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 66 | 65 | notbid | |- ( ph -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 67 | 66 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 68 | fvex | |- ( P ` N ) e. _V |
|
| 69 | 68 | eupth2lem2 | |- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( P ` N ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 70 | 69 | adantll | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 71 | 42 67 70 | 3bitrd | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` N ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 72 | 71 | expcom | |- ( ( P ` N ) = U -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 73 | 72 | eqcoms | |- ( U = ( P ` N ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 74 | fvexd | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( F ` N ) e. _V ) |
|
| 75 | 18 | simpld | |- ( ph -> ( P ` N ) e. V ) |
| 76 | 75 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( P ` N ) e. V ) |
| 77 | 5 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> U e. V ) |
| 78 | neeq2 | |- ( ( P ` ( N + 1 ) ) = U -> ( ( P ` N ) =/= ( P ` ( N + 1 ) ) <-> ( P ` N ) =/= U ) ) |
|
| 79 | 78 | biimpcd | |- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( ( P ` ( N + 1 ) ) = U -> ( P ` N ) =/= U ) ) |
| 80 | 79 | adantl | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( P ` ( N + 1 ) ) = U -> ( P ` N ) =/= U ) ) |
| 81 | 80 | imp | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( P ` N ) =/= U ) |
| 82 | 15 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( I ` ( F ` N ) ) e. ~P V ) |
| 83 | 11 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
| 84 | preq2 | |- ( ( P ` ( N + 1 ) ) = U -> { ( P ` N ) , ( P ` ( N + 1 ) ) } = { ( P ` N ) , U } ) |
|
| 85 | 84 | sseq1d | |- ( ( P ` ( N + 1 ) ) = U -> ( { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) <-> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) ) |
| 86 | 85 | biimpcd | |- ( { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) -> ( ( P ` ( N + 1 ) ) = U -> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) ) |
| 87 | 31 86 | biimtrdi | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) -> ( ( P ` ( N + 1 ) ) = U -> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) ) ) |
| 88 | 27 87 | mpd | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( P ` ( N + 1 ) ) = U -> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) ) |
| 89 | 88 | imp | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> { ( P ` N ) , U } C_ ( I ` ( F ` N ) ) ) |
| 90 | 8 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( Vtx ` Y ) = V ) |
| 91 | 74 76 77 81 82 83 89 90 | 1hegrvtxdg1r | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( ( VtxDeg ` Y ) ` U ) = 1 ) |
| 92 | 91 | oveq2d | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) = ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) |
| 93 | 92 | breq2d | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 94 | 93 | notbid | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) ) ) |
| 95 | 66 | ad2antrr | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + 1 ) <-> -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 96 | necom | |- ( ( P ` N ) =/= ( P ` ( N + 1 ) ) <-> ( P ` ( N + 1 ) ) =/= ( P ` N ) ) |
|
| 97 | fvex | |- ( P ` ( N + 1 ) ) e. _V |
|
| 98 | 97 | eupth2lem2 | |- ( ( ( P ` ( N + 1 ) ) =/= ( P ` N ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 99 | 96 98 | sylanb | |- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
| 100 | 99 | con1bid | |- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 101 | 100 | adantll | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 102 | 94 95 101 | 3bitrd | |- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( P ` ( N + 1 ) ) = U ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
| 103 | 102 | expcom | |- ( ( P ` ( N + 1 ) ) = U -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 104 | 103 | eqcoms | |- ( U = ( P ` ( N + 1 ) ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 105 | 73 104 | jaoi | |- ( ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 106 | 105 | com12 | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
| 107 | 106 | 3impia | |- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |