This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a graph with one hyperedge, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1hegrvtxdg1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 1hegrvtxdg1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| 1hegrvtxdg1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| 1hegrvtxdg1.n | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| 1hegrvtxdg1.x | ⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 ) | ||
| 1hegrvtxdg1.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) | ||
| 1hegrvtxdg1.e | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 ) | ||
| 1hegrvtxdg1.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | ||
| Assertion | 1hegrvtxdg1r | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hegrvtxdg1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 2 | 1hegrvtxdg1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 3 | 1hegrvtxdg1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | 1hegrvtxdg1.n | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 5 | 1hegrvtxdg1.x | ⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 ) | |
| 6 | 1hegrvtxdg1.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) | |
| 7 | 1hegrvtxdg1.e | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 ) | |
| 8 | 1hegrvtxdg1.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 9 | 4 | necomd | ⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
| 10 | prcom | ⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 } | |
| 11 | 10 7 | eqsstrid | ⊢ ( 𝜑 → { 𝐶 , 𝐵 } ⊆ 𝐸 ) |
| 12 | 1 3 2 9 5 6 11 8 | 1hegrvtxdg1 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 1 ) |