This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1hegrvtxdg1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 1hegrvtxdg1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| 1hegrvtxdg1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| 1hegrvtxdg1.n | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| 1hegrvtxdg1.x | ⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 ) | ||
| 1hegrvtxdg1.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) | ||
| 1hegrvtxdg1.e | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 ) | ||
| 1hegrvtxdg1.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | ||
| Assertion | 1hegrvtxdg1 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐵 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hegrvtxdg1.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 2 | 1hegrvtxdg1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 3 | 1hegrvtxdg1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | 1hegrvtxdg1.n | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 5 | 1hegrvtxdg1.x | ⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 ) | |
| 6 | 1hegrvtxdg1.i | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } ) | |
| 7 | 1hegrvtxdg1.e | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 ) | |
| 8 | 1hegrvtxdg1.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) | |
| 9 | prid1g | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐵 , 𝐶 } ) | |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 11 | 7 10 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) |
| 12 | prid2g | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ { 𝐵 , 𝐶 } ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 14 | 7 13 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐸 ) |
| 15 | 5 11 14 4 | nehash2 | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐸 ) ) |
| 16 | 6 8 1 2 5 11 15 | 1hevtxdg1 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐵 ) = 1 ) |