This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for trlsegvdeg . (Contributed by AV, 20-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | trlsegvdeglem1 | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 7 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 8 | 1 | wlkpvtx | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) ) |
| 9 | elfzofz | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 10 | 8 9 | impel | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ) |
| 11 | 1 | wlkpvtx | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) |
| 12 | fzofzp1 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 13 | 11 12 | impel | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) |
| 14 | 10 13 | jca | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) |
| 15 | 14 | ex | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) ) |
| 16 | 6 7 15 | 3syl | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) ) |
| 17 | 4 16 | mpd | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑁 ) ∈ 𝑉 ∧ ( 𝑃 ‘ ( 𝑁 + 1 ) ) ∈ 𝑉 ) ) |