This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eupth2lem2.1 | ⊢ 𝐵 ∈ V | |
| Assertion | eupth2lem2 | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ¬ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth2lem2.1 | ⊢ 𝐵 ∈ V | |
| 2 | eqidd | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → 𝐵 = 𝐵 ) | |
| 3 | 2 | olcd | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) |
| 4 | 3 | biantrud | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) ) |
| 5 | eupth2lem1 | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) ) | |
| 6 | 1 5 | ax-mp | ⊢ ( 𝐵 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) |
| 7 | 4 6 | bitr4di | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 ≠ 𝐵 ↔ 𝐵 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) |
| 8 | simpr | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → 𝐵 = 𝑈 ) | |
| 9 | 8 | eleq1d | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) |
| 10 | 7 9 | bitrd | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 ≠ 𝐵 ↔ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) |
| 11 | 10 | necon1bbid | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ¬ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ 𝐴 = 𝐵 ) ) |
| 12 | simpl | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → 𝐵 ≠ 𝐶 ) | |
| 13 | neeq1 | ⊢ ( 𝐵 = 𝐴 → ( 𝐵 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶 ) ) | |
| 14 | 12 13 | syl5ibcom | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 → 𝐴 ≠ 𝐶 ) ) |
| 15 | 14 | pm4.71rd | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐴 ) ) ) |
| 16 | eqcom | ⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) | |
| 17 | ancom | ⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐴 ) ) | |
| 18 | 15 16 17 | 3bitr4g | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 = 𝐵 ↔ ( 𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶 ) ) ) |
| 19 | 12 | neneqd | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ¬ 𝐵 = 𝐶 ) |
| 20 | biorf | ⊢ ( ¬ 𝐵 = 𝐶 → ( 𝐵 = 𝐴 ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐴 ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐴 ) ) ) |
| 22 | orcom | ⊢ ( ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) | |
| 23 | 21 22 | bitrdi | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 = 𝐴 ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) |
| 24 | 23 | anbi1d | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ( 𝐵 = 𝐴 ∧ 𝐴 ≠ 𝐶 ) ↔ ( ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) ) ) |
| 25 | 18 24 | bitrd | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 = 𝐵 ↔ ( ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) ) ) |
| 26 | ancom | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ↔ ( ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) ) | |
| 27 | 25 26 | bitr4di | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) ) |
| 28 | eupth2lem1 | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ↔ ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) ) | |
| 29 | 1 28 | ax-mp | ⊢ ( 𝐵 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ↔ ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ) |
| 30 | 8 | eleq1d | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( 𝐵 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ) ) |
| 31 | 29 30 | bitr3id | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ( 𝐴 ≠ 𝐶 ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐶 ) ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ) ) |
| 32 | 11 27 31 | 3bitrd | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 = 𝑈 ) → ( ¬ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ 𝑈 ∈ if ( 𝐴 = 𝐶 , ∅ , { 𝐴 , 𝐶 } ) ) ) |