This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append one path segment to an Eulerian path <. F , P >. which may not be an (Eulerian) circuit to become an Eulerian circuit <. H , Q >. of the supergraph S obtained by adding the new edge to the graph G . (Contributed by AV, 11-Mar-2021) (Proof shortened by AV, 30-Oct-2021) (Revised by AV, 8-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupthp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| eupthp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| eupthp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| eupthp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| eupthp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| eupthp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| eupthp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| eupthp1.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | ||
| eupthp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| eupthp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | ||
| eupthp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | ||
| eupthp1.u | ⊢ ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) | ||
| eupthp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | ||
| eupthp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | ||
| eupthp1.s | ⊢ ( Vtx ‘ 𝑆 ) = 𝑉 | ||
| eupthp1.l | ⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) | ||
| eupth2eucrct.c | ⊢ ( 𝜑 → 𝐶 = ( 𝑃 ‘ 0 ) ) | ||
| Assertion | eupth2eucrct | ⊢ ( 𝜑 → ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ∧ 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupthp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eupthp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | eupthp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | eupthp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | eupthp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | eupthp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | eupthp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | eupthp1.p | ⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) | |
| 9 | eupthp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | eupthp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | eupthp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | |
| 12 | eupthp1.u | ⊢ ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) | |
| 13 | eupthp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | |
| 14 | eupthp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | |
| 15 | eupthp1.s | ⊢ ( Vtx ‘ 𝑆 ) = 𝑉 | |
| 16 | eupthp1.l | ⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) | |
| 17 | eupth2eucrct.c | ⊢ ( 𝜑 → 𝐶 = ( 𝑃 ‘ 0 ) ) | |
| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | eupthp1 | ⊢ ( 𝜑 → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) | |
| 20 | eupthistrl | ⊢ ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 → 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ) |
| 22 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 0 ) ) | |
| 23 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) | |
| 24 | 22 23 | eqeq12d | ⊢ ( 𝑘 = 0 → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑄 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) ) |
| 25 | eupthiswlk | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 26 | 8 25 | syl | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 27 | 12 | a1i | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
| 28 | 15 | a1i | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 29 | 1 2 3 4 5 6 7 26 9 10 11 27 13 14 28 | wlkp1lem5 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 30 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 31 | lencl | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 32 | 9 | eleq1i | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 33 | 0elfz | ⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) | |
| 34 | 32 33 | sylbir | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 35 | 31 34 | syl | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 36 | 8 25 30 35 | 4syl | ⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 37 | 24 29 36 | rspcdva | ⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝑄 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
| 39 | 17 | eqcomd | ⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = 𝐶 ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝑃 ‘ 0 ) = 𝐶 ) |
| 41 | 14 | a1i | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ) |
| 42 | 13 | fveq2i | ⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) |
| 43 | 42 | a1i | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) ) |
| 44 | wrdfin | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin ) | |
| 45 | 8 25 30 44 | 4syl | ⊢ ( 𝜑 → 𝐹 ∈ Fin ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐹 ∈ Fin ) |
| 47 | snfi | ⊢ { 〈 𝑁 , 𝐵 〉 } ∈ Fin | |
| 48 | 47 | a1i | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → { 〈 𝑁 , 𝐵 〉 } ∈ Fin ) |
| 49 | wrddm | ⊢ ( 𝐹 ∈ Word dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 50 | 8 25 30 49 | 4syl | ⊢ ( 𝜑 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 51 | fzonel | ⊢ ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 52 | 51 | a1i | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 53 | 9 | eleq1i | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 54 | 52 53 | sylnibr | ⊢ ( 𝜑 → ¬ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 55 | eleq2 | ⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑁 ∈ dom 𝐹 ↔ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 56 | 55 | notbid | ⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ¬ 𝑁 ∈ dom 𝐹 ↔ ¬ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 57 | 54 56 | syl5ibrcom | ⊢ ( 𝜑 → ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ¬ 𝑁 ∈ dom 𝐹 ) ) |
| 58 | 9 | fvexi | ⊢ 𝑁 ∈ V |
| 59 | 58 | a1i | ⊢ ( 𝜑 → 𝑁 ∈ V ) |
| 60 | 59 5 | opeldmd | ⊢ ( 𝜑 → ( 〈 𝑁 , 𝐵 〉 ∈ 𝐹 → 𝑁 ∈ dom 𝐹 ) ) |
| 61 | 57 60 | nsyld | ⊢ ( 𝜑 → ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) ) |
| 62 | 50 61 | mpd | ⊢ ( 𝜑 → ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) |
| 64 | disjsn | ⊢ ( ( 𝐹 ∩ { 〈 𝑁 , 𝐵 〉 } ) = ∅ ↔ ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) | |
| 65 | 63 64 | sylibr | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝐹 ∩ { 〈 𝑁 , 𝐵 〉 } ) = ∅ ) |
| 66 | hashun | ⊢ ( ( 𝐹 ∈ Fin ∧ { 〈 𝑁 , 𝐵 〉 } ∈ Fin ∧ ( 𝐹 ∩ { 〈 𝑁 , 𝐵 〉 } ) = ∅ ) → ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) ) ) | |
| 67 | 46 48 65 66 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) ) ) |
| 68 | 9 | eqcomi | ⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 69 | opex | ⊢ 〈 𝑁 , 𝐵 〉 ∈ V | |
| 70 | hashsng | ⊢ ( 〈 𝑁 , 𝐵 〉 ∈ V → ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) = 1 ) | |
| 71 | 69 70 | ax-mp | ⊢ ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) = 1 |
| 72 | 68 71 | oveq12i | ⊢ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) ) = ( 𝑁 + 1 ) |
| 73 | 72 | a1i | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) ) = ( 𝑁 + 1 ) ) |
| 74 | 43 67 73 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) ) |
| 75 | 41 74 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) = ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) ) |
| 76 | ovexd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ V ) | |
| 77 | 1 2 3 4 5 6 7 26 9 | wlkp1lem1 | ⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
| 78 | 76 6 77 | 3jca | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) ) |
| 79 | 78 | adantr | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) ) |
| 80 | fsnunfv | ⊢ ( ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) | |
| 81 | 79 80 | syl | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 82 | 75 81 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐶 = ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) ) |
| 83 | 38 40 82 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) ) |
| 84 | iscrct | ⊢ ( 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ∧ ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) ) ) | |
| 85 | 21 83 84 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ) |
| 86 | 19 85 | jca | ⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ∧ 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ) ) |
| 87 | 18 86 | mpdan | ⊢ ( 𝜑 → ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ∧ 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ) ) |