This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eupth2lem1 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( ∅ = if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) → ( 𝑈 ∈ ∅ ↔ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) | |
| 2 | 1 | bibi1d | ⊢ ( ∅ = if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) → ( ( 𝑈 ∈ ∅ ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ↔ ( 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) ) |
| 3 | eleq2 | ⊢ ( { 𝐴 , 𝐵 } = if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) → ( 𝑈 ∈ { 𝐴 , 𝐵 } ↔ 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ) ) | |
| 4 | 3 | bibi1d | ⊢ ( { 𝐴 , 𝐵 } = if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) → ( ( 𝑈 ∈ { 𝐴 , 𝐵 } ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ↔ ( 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) ) |
| 5 | noel | ⊢ ¬ 𝑈 ∈ ∅ | |
| 6 | 5 | a1i | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ¬ 𝑈 ∈ ∅ ) |
| 7 | simpl | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) → 𝐴 ≠ 𝐵 ) | |
| 8 | 7 | neneqd | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) → ¬ 𝐴 = 𝐵 ) |
| 9 | simpr | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) | |
| 10 | 8 9 | nsyl3 | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ¬ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) |
| 11 | 6 10 | 2falsed | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐴 = 𝐵 ) → ( 𝑈 ∈ ∅ ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |
| 12 | elprg | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) | |
| 13 | df-ne | ⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) | |
| 14 | ibar | ⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) | |
| 15 | 13 14 | sylbir | ⊢ ( ¬ 𝐴 = 𝐵 → ( ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |
| 16 | 12 15 | sylan9bb | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ ¬ 𝐴 = 𝐵 ) → ( 𝑈 ∈ { 𝐴 , 𝐵 } ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |
| 17 | 2 4 11 16 | ifbothda | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ if ( 𝐴 = 𝐵 , ∅ , { 𝐴 , 𝐵 } ) ↔ ( 𝐴 ≠ 𝐵 ∧ ( 𝑈 = 𝐴 ∨ 𝑈 = 𝐵 ) ) ) ) |