This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An Eulerian path is a trail. (Contributed by Alexander van der Vekens, 24-Nov-2017) (Revised by AV, 18-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eupthistrl | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | iseupth | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –onto→ dom ( iEdg ‘ 𝐺 ) ) ) |
| 3 | 2 | simplbi | ⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |