This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for erov and eroprf . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eropr.1 | ⊢ 𝐽 = ( 𝐴 / 𝑅 ) | |
| eropr.2 | ⊢ 𝐾 = ( 𝐵 / 𝑆 ) | ||
| eropr.3 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) | ||
| eropr.4 | ⊢ ( 𝜑 → 𝑅 Er 𝑈 ) | ||
| eropr.5 | ⊢ ( 𝜑 → 𝑆 Er 𝑉 ) | ||
| eropr.6 | ⊢ ( 𝜑 → 𝑇 Er 𝑊 ) | ||
| eropr.7 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) | ||
| eropr.8 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) | ||
| eropr.9 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) | ||
| eropr.10 | ⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) | ||
| eropr.11 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) | ||
| Assertion | eroveu | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.1 | ⊢ 𝐽 = ( 𝐴 / 𝑅 ) | |
| 2 | eropr.2 | ⊢ 𝐾 = ( 𝐵 / 𝑆 ) | |
| 3 | eropr.3 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) | |
| 4 | eropr.4 | ⊢ ( 𝜑 → 𝑅 Er 𝑈 ) | |
| 5 | eropr.5 | ⊢ ( 𝜑 → 𝑆 Er 𝑉 ) | |
| 6 | eropr.6 | ⊢ ( 𝜑 → 𝑇 Er 𝑊 ) | |
| 7 | eropr.7 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) | |
| 8 | eropr.8 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) | |
| 9 | eropr.9 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) | |
| 10 | eropr.10 | ⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) | |
| 11 | eropr.11 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) | |
| 12 | elqsi | ⊢ ( 𝑋 ∈ ( 𝐴 / 𝑅 ) → ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ) | |
| 13 | 12 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝐽 → ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ) |
| 14 | elqsi | ⊢ ( 𝑌 ∈ ( 𝐵 / 𝑆 ) → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) | |
| 15 | 14 2 | eleq2s | ⊢ ( 𝑌 ∈ 𝐾 → ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) |
| 16 | 13 15 | anim12i | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) → ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) |
| 18 | reeanv | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑋 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑌 = [ 𝑞 ] 𝑆 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) |
| 20 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → 𝑇 ∈ 𝑍 ) |
| 21 | ecexg | ⊢ ( 𝑇 ∈ 𝑍 → [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ V ) | |
| 22 | elisset | ⊢ ( [ ( 𝑝 + 𝑞 ) ] 𝑇 ∈ V → ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) |
| 24 | 23 | biantrud | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 25 | 24 | 2rexbidv | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 26 | 19 25 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 27 | 19.42v | ⊢ ( ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) | |
| 28 | 27 | bicomi | ⊢ ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 29 | 28 | rexbii | ⊢ ( ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑞 ∈ 𝐵 ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 30 | rexcom4 | ⊢ ( ∃ 𝑞 ∈ 𝐵 ∃ 𝑧 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) | |
| 31 | 29 30 | bitri | ⊢ ( ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 32 | 31 | rexbii | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 33 | rexcom4 | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑧 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) | |
| 34 | 32 33 | bitri | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ ∃ 𝑧 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 35 | 26 34 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 36 | reeanv | ⊢ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) | |
| 37 | eceq1 | ⊢ ( 𝑝 = 𝑟 → [ 𝑝 ] 𝑅 = [ 𝑟 ] 𝑅 ) | |
| 38 | 37 | eqeq2d | ⊢ ( 𝑝 = 𝑟 → ( 𝑋 = [ 𝑝 ] 𝑅 ↔ 𝑋 = [ 𝑟 ] 𝑅 ) ) |
| 39 | 38 | anbi1d | ⊢ ( 𝑝 = 𝑟 → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) ) |
| 40 | oveq1 | ⊢ ( 𝑝 = 𝑟 → ( 𝑝 + 𝑞 ) = ( 𝑟 + 𝑞 ) ) | |
| 41 | 40 | eceq1d | ⊢ ( 𝑝 = 𝑟 → [ ( 𝑝 + 𝑞 ) ] 𝑇 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) |
| 42 | 41 | eqeq2d | ⊢ ( 𝑝 = 𝑟 → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ) |
| 43 | 39 42 | anbi12d | ⊢ ( 𝑝 = 𝑟 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ) ) |
| 44 | eceq1 | ⊢ ( 𝑞 = 𝑡 → [ 𝑞 ] 𝑆 = [ 𝑡 ] 𝑆 ) | |
| 45 | 44 | eqeq2d | ⊢ ( 𝑞 = 𝑡 → ( 𝑌 = [ 𝑞 ] 𝑆 ↔ 𝑌 = [ 𝑡 ] 𝑆 ) ) |
| 46 | 45 | anbi2d | ⊢ ( 𝑞 = 𝑡 → ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ) ) |
| 47 | oveq2 | ⊢ ( 𝑞 = 𝑡 → ( 𝑟 + 𝑞 ) = ( 𝑟 + 𝑡 ) ) | |
| 48 | 47 | eceq1d | ⊢ ( 𝑞 = 𝑡 → [ ( 𝑟 + 𝑞 ) ] 𝑇 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) |
| 49 | 48 | eqeq2d | ⊢ ( 𝑞 = 𝑡 → ( 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ↔ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) |
| 50 | 46 49 | anbi12d | ⊢ ( 𝑞 = 𝑡 → ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) ) |
| 51 | 43 50 | cbvrex2vw | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ) |
| 52 | eceq1 | ⊢ ( 𝑝 = 𝑠 → [ 𝑝 ] 𝑅 = [ 𝑠 ] 𝑅 ) | |
| 53 | 52 | eqeq2d | ⊢ ( 𝑝 = 𝑠 → ( 𝑋 = [ 𝑝 ] 𝑅 ↔ 𝑋 = [ 𝑠 ] 𝑅 ) ) |
| 54 | 53 | anbi1d | ⊢ ( 𝑝 = 𝑠 → ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ) ) |
| 55 | oveq1 | ⊢ ( 𝑝 = 𝑠 → ( 𝑝 + 𝑞 ) = ( 𝑠 + 𝑞 ) ) | |
| 56 | 55 | eceq1d | ⊢ ( 𝑝 = 𝑠 → [ ( 𝑝 + 𝑞 ) ] 𝑇 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) |
| 57 | 56 | eqeq2d | ⊢ ( 𝑝 = 𝑠 → ( 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ) |
| 58 | 54 57 | anbi12d | ⊢ ( 𝑝 = 𝑠 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ) ) |
| 59 | eceq1 | ⊢ ( 𝑞 = 𝑢 → [ 𝑞 ] 𝑆 = [ 𝑢 ] 𝑆 ) | |
| 60 | 59 | eqeq2d | ⊢ ( 𝑞 = 𝑢 → ( 𝑌 = [ 𝑞 ] 𝑆 ↔ 𝑌 = [ 𝑢 ] 𝑆 ) ) |
| 61 | 60 | anbi2d | ⊢ ( 𝑞 = 𝑢 → ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ↔ ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ) ) |
| 62 | oveq2 | ⊢ ( 𝑞 = 𝑢 → ( 𝑠 + 𝑞 ) = ( 𝑠 + 𝑢 ) ) | |
| 63 | 62 | eceq1d | ⊢ ( 𝑞 = 𝑢 → [ ( 𝑠 + 𝑞 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) |
| 64 | 63 | eqeq2d | ⊢ ( 𝑞 = 𝑢 → ( 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 65 | 61 64 | anbi12d | ⊢ ( 𝑞 = 𝑢 → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 66 | 58 65 | cbvrex2vw | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 67 | 51 66 | anbi12i | ⊢ ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ↔ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑠 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 68 | 36 67 | bitr4i | ⊢ ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 69 | reeanv | ⊢ ( ∃ 𝑡 ∈ 𝐵 ∃ 𝑢 ∈ 𝐵 ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ↔ ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) | |
| 70 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑅 Er 𝑈 ) |
| 71 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐴 ⊆ 𝑈 ) |
| 72 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑟 ∈ 𝐴 ) | |
| 73 | 71 72 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑟 ∈ 𝑈 ) |
| 74 | 70 73 | erth | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 𝑅 𝑠 ↔ [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ) ) |
| 75 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑆 Er 𝑉 ) |
| 76 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐵 ⊆ 𝑉 ) |
| 77 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑡 ∈ 𝐵 ) | |
| 78 | 76 77 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑡 ∈ 𝑉 ) |
| 79 | 75 78 | erth | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑡 𝑆 𝑢 ↔ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) |
| 80 | 74 79 | anbi12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) ↔ ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) ) |
| 81 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝑇 Er 𝑊 ) |
| 82 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → 𝐶 ⊆ 𝑊 ) |
| 83 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) |
| 84 | 83 72 77 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 + 𝑡 ) ∈ 𝐶 ) |
| 85 | 82 84 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( 𝑟 + 𝑡 ) ∈ 𝑊 ) |
| 86 | 81 85 | erth | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 87 | 11 80 86 | 3imtr3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) |
| 88 | eqeq2 | ⊢ ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → ( [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) | |
| 89 | 88 | biimprcd | ⊢ ( [ ( 𝑟 + 𝑡 ) ] 𝑇 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
| 90 | 87 89 | syl6 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) → ( 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) ) |
| 91 | 90 | impd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
| 92 | eqeq1 | ⊢ ( 𝑋 = [ 𝑟 ] 𝑅 → ( 𝑋 = [ 𝑠 ] 𝑅 ↔ [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ) ) | |
| 93 | eqeq1 | ⊢ ( 𝑌 = [ 𝑡 ] 𝑆 → ( 𝑌 = [ 𝑢 ] 𝑆 ↔ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) | |
| 94 | 92 93 | bi2anan9 | ⊢ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) → ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ↔ ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ) ) |
| 95 | 94 | anbi1d | ⊢ ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ↔ ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 96 | 95 | adantr | ⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ↔ ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) ) |
| 97 | eqeq1 | ⊢ ( 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 → ( 𝑧 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) | |
| 98 | 97 | adantl | ⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( 𝑧 = 𝑤 ↔ [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) |
| 99 | 96 98 | imbi12d | ⊢ ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → 𝑧 = 𝑤 ) ↔ ( ( ( [ 𝑟 ] 𝑅 = [ 𝑠 ] 𝑅 ∧ [ 𝑡 ] 𝑆 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → [ ( 𝑟 + 𝑡 ) ] 𝑇 = 𝑤 ) ) ) |
| 100 | 91 99 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) → ( ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) → 𝑧 = 𝑤 ) ) ) |
| 101 | 100 | impd | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 102 | 101 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 103 | 102 | rexlimdvva | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) → ( ∃ 𝑡 ∈ 𝐵 ∃ 𝑢 ∈ 𝐵 ( ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 104 | 69 103 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ) → ( ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 105 | 104 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝐴 ∃ 𝑠 ∈ 𝐴 ( ∃ 𝑡 ∈ 𝐵 ( ( 𝑋 = [ 𝑟 ] 𝑅 ∧ 𝑌 = [ 𝑡 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑟 + 𝑡 ) ] 𝑇 ) ∧ ∃ 𝑢 ∈ 𝐵 ( ( 𝑋 = [ 𝑠 ] 𝑅 ∧ 𝑌 = [ 𝑢 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑠 + 𝑢 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 106 | 68 105 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 107 | 106 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 108 | 107 | alrimivv | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) |
| 109 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) | |
| 110 | 109 | anbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 111 | 110 | 2rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 112 | 111 | eu4 | ⊢ ( ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ∃ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑤 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) → 𝑧 = 𝑤 ) ) ) |
| 113 | 35 108 112 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑋 = [ 𝑝 ] 𝑅 ∧ 𝑌 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |