This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for erov and eroprf . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eropr.1 | |- J = ( A /. R ) |
|
| eropr.2 | |- K = ( B /. S ) |
||
| eropr.3 | |- ( ph -> T e. Z ) |
||
| eropr.4 | |- ( ph -> R Er U ) |
||
| eropr.5 | |- ( ph -> S Er V ) |
||
| eropr.6 | |- ( ph -> T Er W ) |
||
| eropr.7 | |- ( ph -> A C_ U ) |
||
| eropr.8 | |- ( ph -> B C_ V ) |
||
| eropr.9 | |- ( ph -> C C_ W ) |
||
| eropr.10 | |- ( ph -> .+ : ( A X. B ) --> C ) |
||
| eropr.11 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) |
||
| Assertion | eroveu | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E! z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.1 | |- J = ( A /. R ) |
|
| 2 | eropr.2 | |- K = ( B /. S ) |
|
| 3 | eropr.3 | |- ( ph -> T e. Z ) |
|
| 4 | eropr.4 | |- ( ph -> R Er U ) |
|
| 5 | eropr.5 | |- ( ph -> S Er V ) |
|
| 6 | eropr.6 | |- ( ph -> T Er W ) |
|
| 7 | eropr.7 | |- ( ph -> A C_ U ) |
|
| 8 | eropr.8 | |- ( ph -> B C_ V ) |
|
| 9 | eropr.9 | |- ( ph -> C C_ W ) |
|
| 10 | eropr.10 | |- ( ph -> .+ : ( A X. B ) --> C ) |
|
| 11 | eropr.11 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) |
|
| 12 | elqsi | |- ( X e. ( A /. R ) -> E. p e. A X = [ p ] R ) |
|
| 13 | 12 1 | eleq2s | |- ( X e. J -> E. p e. A X = [ p ] R ) |
| 14 | elqsi | |- ( Y e. ( B /. S ) -> E. q e. B Y = [ q ] S ) |
|
| 15 | 14 2 | eleq2s | |- ( Y e. K -> E. q e. B Y = [ q ] S ) |
| 16 | 13 15 | anim12i | |- ( ( X e. J /\ Y e. K ) -> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) |
| 17 | 16 | adantl | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) |
| 18 | reeanv | |- ( E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) <-> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) ) |
| 20 | 3 | adantr | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> T e. Z ) |
| 21 | ecexg | |- ( T e. Z -> [ ( p .+ q ) ] T e. _V ) |
|
| 22 | elisset | |- ( [ ( p .+ q ) ] T e. _V -> E. z z = [ ( p .+ q ) ] T ) |
|
| 23 | 20 21 22 | 3syl | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. z z = [ ( p .+ q ) ] T ) |
| 24 | 23 | biantrud | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) ) |
| 25 | 24 | 2rexbidv | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) <-> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) ) |
| 26 | 19 25 | mpbid | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) |
| 27 | 19.42v | |- ( E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) |
|
| 28 | 27 | bicomi | |- ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 29 | 28 | rexbii | |- ( E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. q e. B E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 30 | rexcom4 | |- ( E. q e. B E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
|
| 31 | 29 30 | bitri | |- ( E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 32 | 31 | rexbii | |- ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. p e. A E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 33 | rexcom4 | |- ( E. p e. A E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
|
| 34 | 32 33 | bitri | |- ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 35 | 26 34 | sylib | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 36 | reeanv | |- ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
|
| 37 | eceq1 | |- ( p = r -> [ p ] R = [ r ] R ) |
|
| 38 | 37 | eqeq2d | |- ( p = r -> ( X = [ p ] R <-> X = [ r ] R ) ) |
| 39 | 38 | anbi1d | |- ( p = r -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( X = [ r ] R /\ Y = [ q ] S ) ) ) |
| 40 | oveq1 | |- ( p = r -> ( p .+ q ) = ( r .+ q ) ) |
|
| 41 | 40 | eceq1d | |- ( p = r -> [ ( p .+ q ) ] T = [ ( r .+ q ) ] T ) |
| 42 | 41 | eqeq2d | |- ( p = r -> ( z = [ ( p .+ q ) ] T <-> z = [ ( r .+ q ) ] T ) ) |
| 43 | 39 42 | anbi12d | |- ( p = r -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ r ] R /\ Y = [ q ] S ) /\ z = [ ( r .+ q ) ] T ) ) ) |
| 44 | eceq1 | |- ( q = t -> [ q ] S = [ t ] S ) |
|
| 45 | 44 | eqeq2d | |- ( q = t -> ( Y = [ q ] S <-> Y = [ t ] S ) ) |
| 46 | 45 | anbi2d | |- ( q = t -> ( ( X = [ r ] R /\ Y = [ q ] S ) <-> ( X = [ r ] R /\ Y = [ t ] S ) ) ) |
| 47 | oveq2 | |- ( q = t -> ( r .+ q ) = ( r .+ t ) ) |
|
| 48 | 47 | eceq1d | |- ( q = t -> [ ( r .+ q ) ] T = [ ( r .+ t ) ] T ) |
| 49 | 48 | eqeq2d | |- ( q = t -> ( z = [ ( r .+ q ) ] T <-> z = [ ( r .+ t ) ] T ) ) |
| 50 | 46 49 | anbi12d | |- ( q = t -> ( ( ( X = [ r ] R /\ Y = [ q ] S ) /\ z = [ ( r .+ q ) ] T ) <-> ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) ) ) |
| 51 | 43 50 | cbvrex2vw | |- ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) ) |
| 52 | eceq1 | |- ( p = s -> [ p ] R = [ s ] R ) |
|
| 53 | 52 | eqeq2d | |- ( p = s -> ( X = [ p ] R <-> X = [ s ] R ) ) |
| 54 | 53 | anbi1d | |- ( p = s -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( X = [ s ] R /\ Y = [ q ] S ) ) ) |
| 55 | oveq1 | |- ( p = s -> ( p .+ q ) = ( s .+ q ) ) |
|
| 56 | 55 | eceq1d | |- ( p = s -> [ ( p .+ q ) ] T = [ ( s .+ q ) ] T ) |
| 57 | 56 | eqeq2d | |- ( p = s -> ( w = [ ( p .+ q ) ] T <-> w = [ ( s .+ q ) ] T ) ) |
| 58 | 54 57 | anbi12d | |- ( p = s -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) <-> ( ( X = [ s ] R /\ Y = [ q ] S ) /\ w = [ ( s .+ q ) ] T ) ) ) |
| 59 | eceq1 | |- ( q = u -> [ q ] S = [ u ] S ) |
|
| 60 | 59 | eqeq2d | |- ( q = u -> ( Y = [ q ] S <-> Y = [ u ] S ) ) |
| 61 | 60 | anbi2d | |- ( q = u -> ( ( X = [ s ] R /\ Y = [ q ] S ) <-> ( X = [ s ] R /\ Y = [ u ] S ) ) ) |
| 62 | oveq2 | |- ( q = u -> ( s .+ q ) = ( s .+ u ) ) |
|
| 63 | 62 | eceq1d | |- ( q = u -> [ ( s .+ q ) ] T = [ ( s .+ u ) ] T ) |
| 64 | 63 | eqeq2d | |- ( q = u -> ( w = [ ( s .+ q ) ] T <-> w = [ ( s .+ u ) ] T ) ) |
| 65 | 61 64 | anbi12d | |- ( q = u -> ( ( ( X = [ s ] R /\ Y = [ q ] S ) /\ w = [ ( s .+ q ) ] T ) <-> ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
| 66 | 58 65 | cbvrex2vw | |- ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) <-> E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) |
| 67 | 51 66 | anbi12i | |- ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) <-> ( E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
| 68 | 36 67 | bitr4i | |- ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) |
| 69 | reeanv | |- ( E. t e. B E. u e. B ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
|
| 70 | 4 | adantr | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> R Er U ) |
| 71 | 7 | adantr | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> A C_ U ) |
| 72 | simprll | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> r e. A ) |
|
| 73 | 71 72 | sseldd | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> r e. U ) |
| 74 | 70 73 | erth | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r R s <-> [ r ] R = [ s ] R ) ) |
| 75 | 5 | adantr | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> S Er V ) |
| 76 | 8 | adantr | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> B C_ V ) |
| 77 | simprrl | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> t e. B ) |
|
| 78 | 76 77 | sseldd | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> t e. V ) |
| 79 | 75 78 | erth | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( t S u <-> [ t ] S = [ u ] S ) ) |
| 80 | 74 79 | anbi12d | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) <-> ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) ) ) |
| 81 | 6 | adantr | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> T Er W ) |
| 82 | 9 | adantr | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> C C_ W ) |
| 83 | 10 | adantr | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> .+ : ( A X. B ) --> C ) |
| 84 | 83 72 77 | fovcdmd | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r .+ t ) e. C ) |
| 85 | 82 84 | sseldd | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r .+ t ) e. W ) |
| 86 | 81 85 | erth | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r .+ t ) T ( s .+ u ) <-> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) |
| 87 | 11 80 86 | 3imtr3d | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) -> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) |
| 88 | eqeq2 | |- ( w = [ ( s .+ u ) ] T -> ( [ ( r .+ t ) ] T = w <-> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) |
|
| 89 | 88 | biimprcd | |- ( [ ( r .+ t ) ] T = [ ( s .+ u ) ] T -> ( w = [ ( s .+ u ) ] T -> [ ( r .+ t ) ] T = w ) ) |
| 90 | 87 89 | syl6 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) -> ( w = [ ( s .+ u ) ] T -> [ ( r .+ t ) ] T = w ) ) ) |
| 91 | 90 | impd | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> [ ( r .+ t ) ] T = w ) ) |
| 92 | eqeq1 | |- ( X = [ r ] R -> ( X = [ s ] R <-> [ r ] R = [ s ] R ) ) |
|
| 93 | eqeq1 | |- ( Y = [ t ] S -> ( Y = [ u ] S <-> [ t ] S = [ u ] S ) ) |
|
| 94 | 92 93 | bi2anan9 | |- ( ( X = [ r ] R /\ Y = [ t ] S ) -> ( ( X = [ s ] R /\ Y = [ u ] S ) <-> ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) ) ) |
| 95 | 94 | anbi1d | |- ( ( X = [ r ] R /\ Y = [ t ] S ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) <-> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
| 96 | 95 | adantr | |- ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) <-> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
| 97 | eqeq1 | |- ( z = [ ( r .+ t ) ] T -> ( z = w <-> [ ( r .+ t ) ] T = w ) ) |
|
| 98 | 97 | adantl | |- ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( z = w <-> [ ( r .+ t ) ] T = w ) ) |
| 99 | 96 98 | imbi12d | |- ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> z = w ) <-> ( ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> [ ( r .+ t ) ] T = w ) ) ) |
| 100 | 91 99 | syl5ibrcom | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> z = w ) ) ) |
| 101 | 100 | impd | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
| 102 | 101 | anassrs | |- ( ( ( ph /\ ( r e. A /\ s e. A ) ) /\ ( t e. B /\ u e. B ) ) -> ( ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
| 103 | 102 | rexlimdvva | |- ( ( ph /\ ( r e. A /\ s e. A ) ) -> ( E. t e. B E. u e. B ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
| 104 | 69 103 | biimtrrid | |- ( ( ph /\ ( r e. A /\ s e. A ) ) -> ( ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
| 105 | 104 | rexlimdvva | |- ( ph -> ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
| 106 | 68 105 | biimtrrid | |- ( ph -> ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) |
| 107 | 106 | adantr | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) |
| 108 | 107 | alrimivv | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> A. z A. w ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) |
| 109 | eqeq1 | |- ( z = w -> ( z = [ ( p .+ q ) ] T <-> w = [ ( p .+ q ) ] T ) ) |
|
| 110 | 109 | anbi2d | |- ( z = w -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) |
| 111 | 110 | 2rexbidv | |- ( z = w -> ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) |
| 112 | 111 | eu4 | |- ( E! z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ A. z A. w ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) ) |
| 113 | 35 108 112 | sylanbrc | |- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E! z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |