This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for erov and eroprf . (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eropr.1 | ⊢ 𝐽 = ( 𝐴 / 𝑅 ) | |
| eropr.2 | ⊢ 𝐾 = ( 𝐵 / 𝑆 ) | ||
| eropr.3 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) | ||
| eropr.4 | ⊢ ( 𝜑 → 𝑅 Er 𝑈 ) | ||
| eropr.5 | ⊢ ( 𝜑 → 𝑆 Er 𝑉 ) | ||
| eropr.6 | ⊢ ( 𝜑 → 𝑇 Er 𝑊 ) | ||
| eropr.7 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) | ||
| eropr.8 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) | ||
| eropr.9 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) | ||
| eropr.10 | ⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) | ||
| eropr.11 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) | ||
| eropr.12 | ⊢ ⨣ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } | ||
| Assertion | erovlem | ⊢ ( 𝜑 → ⨣ = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.1 | ⊢ 𝐽 = ( 𝐴 / 𝑅 ) | |
| 2 | eropr.2 | ⊢ 𝐾 = ( 𝐵 / 𝑆 ) | |
| 3 | eropr.3 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) | |
| 4 | eropr.4 | ⊢ ( 𝜑 → 𝑅 Er 𝑈 ) | |
| 5 | eropr.5 | ⊢ ( 𝜑 → 𝑆 Er 𝑉 ) | |
| 6 | eropr.6 | ⊢ ( 𝜑 → 𝑇 Er 𝑊 ) | |
| 7 | eropr.7 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) | |
| 8 | eropr.8 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) | |
| 9 | eropr.9 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) | |
| 10 | eropr.10 | ⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) | |
| 11 | eropr.11 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) | |
| 12 | eropr.12 | ⊢ ⨣ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } | |
| 13 | simpl | ⊢ ( ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ) | |
| 14 | 13 | reximi | ⊢ ( ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ∃ 𝑞 ∈ 𝐵 ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ) |
| 15 | 14 | reximi | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ) |
| 16 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐽 ↔ 𝑥 ∈ ( 𝐴 / 𝑅 ) ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | 17 | elqs | ⊢ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ↔ ∃ 𝑝 ∈ 𝐴 𝑥 = [ 𝑝 ] 𝑅 ) |
| 19 | 16 18 | bitri | ⊢ ( 𝑥 ∈ 𝐽 ↔ ∃ 𝑝 ∈ 𝐴 𝑥 = [ 𝑝 ] 𝑅 ) |
| 20 | 2 | eleq2i | ⊢ ( 𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ( 𝐵 / 𝑆 ) ) |
| 21 | vex | ⊢ 𝑦 ∈ V | |
| 22 | 21 | elqs | ⊢ ( 𝑦 ∈ ( 𝐵 / 𝑆 ) ↔ ∃ 𝑞 ∈ 𝐵 𝑦 = [ 𝑞 ] 𝑆 ) |
| 23 | 20 22 | bitri | ⊢ ( 𝑦 ∈ 𝐾 ↔ ∃ 𝑞 ∈ 𝐵 𝑦 = [ 𝑞 ] 𝑆 ) |
| 24 | 19 23 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑥 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑦 = [ 𝑞 ] 𝑆 ) ) |
| 25 | reeanv | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑥 = [ 𝑝 ] 𝑅 ∧ ∃ 𝑞 ∈ 𝐵 𝑦 = [ 𝑞 ] 𝑆 ) ) | |
| 26 | 24 25 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ) |
| 27 | 15 26 | sylibr | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) |
| 28 | 27 | pm4.71ri | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 29 | 1 2 3 4 5 6 7 8 9 10 11 | eroveu | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 30 | iota1 | ⊢ ( ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = 𝑧 ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = 𝑧 ) ) |
| 32 | eqcom | ⊢ ( ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = 𝑧 ↔ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) | |
| 33 | 31 32 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
| 34 | 33 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) ) |
| 35 | 28 34 | bitrid | ⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) ) |
| 36 | 35 | oprabbidv | ⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } ) |
| 37 | df-mpo | ⊢ ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } | |
| 38 | nfv | ⊢ Ⅎ 𝑤 ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) | |
| 39 | nfv | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) | |
| 40 | nfiota1 | ⊢ Ⅎ 𝑧 ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) | |
| 41 | 40 | nfeq2 | ⊢ Ⅎ 𝑧 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 42 | 39 41 | nfan | ⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 43 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ↔ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) | |
| 44 | 43 | anbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) ) |
| 45 | 38 42 44 | cbvoprab3 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑤 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑤 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } |
| 46 | 37 45 | eqtr4i | ⊢ ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐾 ) ∧ 𝑧 = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) } |
| 47 | 36 12 46 | 3eqtr4g | ⊢ ( 𝜑 → ⨣ = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |