This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eropr.1 | ⊢ 𝐽 = ( 𝐴 / 𝑅 ) | |
| eropr.2 | ⊢ 𝐾 = ( 𝐵 / 𝑆 ) | ||
| eropr.3 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) | ||
| eropr.4 | ⊢ ( 𝜑 → 𝑅 Er 𝑈 ) | ||
| eropr.5 | ⊢ ( 𝜑 → 𝑆 Er 𝑉 ) | ||
| eropr.6 | ⊢ ( 𝜑 → 𝑇 Er 𝑊 ) | ||
| eropr.7 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) | ||
| eropr.8 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) | ||
| eropr.9 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) | ||
| eropr.10 | ⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) | ||
| eropr.11 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) | ||
| eropr.12 | ⊢ ⨣ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } | ||
| eropr.13 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | ||
| eropr.14 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) | ||
| Assertion | erov | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( [ 𝑃 ] 𝑅 ⨣ [ 𝑄 ] 𝑆 ) = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.1 | ⊢ 𝐽 = ( 𝐴 / 𝑅 ) | |
| 2 | eropr.2 | ⊢ 𝐾 = ( 𝐵 / 𝑆 ) | |
| 3 | eropr.3 | ⊢ ( 𝜑 → 𝑇 ∈ 𝑍 ) | |
| 4 | eropr.4 | ⊢ ( 𝜑 → 𝑅 Er 𝑈 ) | |
| 5 | eropr.5 | ⊢ ( 𝜑 → 𝑆 Er 𝑉 ) | |
| 6 | eropr.6 | ⊢ ( 𝜑 → 𝑇 Er 𝑊 ) | |
| 7 | eropr.7 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) | |
| 8 | eropr.8 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) | |
| 9 | eropr.9 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝑊 ) | |
| 10 | eropr.10 | ⊢ ( 𝜑 → + : ( 𝐴 × 𝐵 ) ⟶ 𝐶 ) | |
| 11 | eropr.11 | ⊢ ( ( 𝜑 ∧ ( ( 𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴 ) ∧ ( 𝑡 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) ) → ( ( 𝑟 𝑅 𝑠 ∧ 𝑡 𝑆 𝑢 ) → ( 𝑟 + 𝑡 ) 𝑇 ( 𝑠 + 𝑢 ) ) ) | |
| 12 | eropr.12 | ⊢ ⨣ = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) } | |
| 13 | eropr.13 | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | |
| 14 | eropr.14 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) | |
| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 | erovlem | ⊢ ( 𝜑 → ⨣ = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ⨣ = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ 𝐾 ↦ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) ) |
| 17 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → 𝑥 = [ 𝑃 ] 𝑅 ) | |
| 18 | 17 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( 𝑥 = [ 𝑝 ] 𝑅 ↔ [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ) ) |
| 19 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → 𝑦 = [ 𝑄 ] 𝑆 ) | |
| 20 | 19 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( 𝑦 = [ 𝑞 ] 𝑆 ↔ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ) |
| 21 | 18 20 | anbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ↔ ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ) ) |
| 22 | 21 | anbi1d | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 23 | 22 | 2rexbidv | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 24 | 23 | iotabidv | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( 𝑥 = [ 𝑃 ] 𝑅 ∧ 𝑦 = [ 𝑄 ] 𝑆 ) ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( 𝑥 = [ 𝑝 ] 𝑅 ∧ 𝑦 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 25 | ecelqsw | ⊢ ( ( 𝑅 ∈ 𝑋 ∧ 𝑃 ∈ 𝐴 ) → [ 𝑃 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) | |
| 26 | 25 1 | eleqtrrdi | ⊢ ( ( 𝑅 ∈ 𝑋 ∧ 𝑃 ∈ 𝐴 ) → [ 𝑃 ] 𝑅 ∈ 𝐽 ) |
| 27 | 13 26 | sylan | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ) → [ 𝑃 ] 𝑅 ∈ 𝐽 ) |
| 28 | 27 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑃 ] 𝑅 ∈ 𝐽 ) |
| 29 | ecelqsw | ⊢ ( ( 𝑆 ∈ 𝑌 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑄 ] 𝑆 ∈ ( 𝐵 / 𝑆 ) ) | |
| 30 | 29 2 | eleqtrrdi | ⊢ ( ( 𝑆 ∈ 𝑌 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑄 ] 𝑆 ∈ 𝐾 ) |
| 31 | 14 30 | sylan | ⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑄 ] 𝑆 ∈ 𝐾 ) |
| 32 | 31 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → [ 𝑄 ] 𝑆 ∈ 𝐾 ) |
| 33 | iotaex | ⊢ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ V | |
| 34 | 33 | a1i | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ∈ V ) |
| 35 | 16 24 28 32 34 | ovmpod | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( [ 𝑃 ] 𝑅 ⨣ [ 𝑄 ] 𝑆 ) = ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 36 | eqid | ⊢ [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 | |
| 37 | eqid | ⊢ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 | |
| 38 | 36 37 | pm3.2i | ⊢ ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) |
| 39 | eqid | ⊢ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 | |
| 40 | 38 39 | pm3.2i | ⊢ ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |
| 41 | eceq1 | ⊢ ( 𝑝 = 𝑃 → [ 𝑝 ] 𝑅 = [ 𝑃 ] 𝑅 ) | |
| 42 | 41 | eqeq2d | ⊢ ( 𝑝 = 𝑃 → ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ↔ [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ) ) |
| 43 | 42 | anbi1d | ⊢ ( 𝑝 = 𝑃 → ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ↔ ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ) ) |
| 44 | oveq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 + 𝑞 ) = ( 𝑃 + 𝑞 ) ) | |
| 45 | 44 | eceq1d | ⊢ ( 𝑝 = 𝑃 → [ ( 𝑝 + 𝑞 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ) |
| 46 | 45 | eqeq2d | ⊢ ( 𝑝 = 𝑃 → ( [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ) ) |
| 47 | 43 46 | anbi12d | ⊢ ( 𝑝 = 𝑃 → ( ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ) ) ) |
| 48 | eceq1 | ⊢ ( 𝑞 = 𝑄 → [ 𝑞 ] 𝑆 = [ 𝑄 ] 𝑆 ) | |
| 49 | 48 | eqeq2d | ⊢ ( 𝑞 = 𝑄 → ( [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ↔ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ) |
| 50 | 49 | anbi2d | ⊢ ( 𝑞 = 𝑄 → ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ↔ ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ) ) |
| 51 | oveq2 | ⊢ ( 𝑞 = 𝑄 → ( 𝑃 + 𝑞 ) = ( 𝑃 + 𝑄 ) ) | |
| 52 | 51 | eceq1d | ⊢ ( 𝑞 = 𝑄 → [ ( 𝑃 + 𝑞 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |
| 53 | 52 | eqeq2d | ⊢ ( 𝑞 = 𝑄 → ( [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ↔ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) ) |
| 54 | 50 53 | anbi12d | ⊢ ( 𝑞 = 𝑄 → ( ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑞 ) ] 𝑇 ) ↔ ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) ) ) |
| 55 | 47 54 | rspc2ev | ⊢ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ∧ ( ( [ 𝑃 ] 𝑅 = [ 𝑃 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑄 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 56 | 40 55 | mp3an3 | ⊢ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 57 | 56 | 3adant1 | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 58 | ecexg | ⊢ ( 𝑇 ∈ 𝑍 → [ ( 𝑃 + 𝑄 ) ] 𝑇 ∈ V ) | |
| 59 | 3 58 | syl | ⊢ ( 𝜑 → [ ( 𝑃 + 𝑄 ) ] 𝑇 ∈ V ) |
| 60 | 59 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → [ ( 𝑃 + 𝑄 ) ] 𝑇 ∈ V ) |
| 61 | simp1 | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → 𝜑 ) | |
| 62 | 1 2 3 4 5 6 7 8 9 10 11 | eroveu | ⊢ ( ( 𝜑 ∧ ( [ 𝑃 ] 𝑅 ∈ 𝐽 ∧ [ 𝑄 ] 𝑆 ∈ 𝐾 ) ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 63 | 61 28 32 62 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ∃! 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 64 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) → 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) | |
| 65 | 64 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) → ( 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ↔ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) |
| 66 | 65 | anbi2d | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) → ( ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 67 | 66 | 2rexbidv | ⊢ ( ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ 𝑧 = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) ) |
| 68 | 60 63 67 | iota2d | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ [ ( 𝑃 + 𝑄 ) ] 𝑇 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ↔ ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) ) |
| 69 | 57 68 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( ℩ 𝑧 ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐵 ( ( [ 𝑃 ] 𝑅 = [ 𝑝 ] 𝑅 ∧ [ 𝑄 ] 𝑆 = [ 𝑞 ] 𝑆 ) ∧ 𝑧 = [ ( 𝑝 + 𝑞 ) ] 𝑇 ) ) = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |
| 70 | 35 69 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) → ( [ 𝑃 ] 𝑅 ⨣ [ 𝑄 ] 𝑆 ) = [ ( 𝑃 + 𝑄 ) ] 𝑇 ) |