This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition that allows to represent "the unique element such that ph " with a class expression A . (Contributed by NM, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iota2df.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| iota2df.2 | ⊢ ( 𝜑 → ∃! 𝑥 𝜓 ) | ||
| iota2df.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | iota2d | ⊢ ( 𝜑 → ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 2 | iota2df.2 | ⊢ ( 𝜑 → ∃! 𝑥 𝜓 ) | |
| 3 | iota2df.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 5 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
| 6 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| 7 | 1 2 3 4 5 6 | iota2df | ⊢ ( 𝜑 → ( 𝜒 ↔ ( ℩ 𝑥 𝜓 ) = 𝐵 ) ) |