This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eropr.1 | |- J = ( A /. R ) |
|
| eropr.2 | |- K = ( B /. S ) |
||
| eropr.3 | |- ( ph -> T e. Z ) |
||
| eropr.4 | |- ( ph -> R Er U ) |
||
| eropr.5 | |- ( ph -> S Er V ) |
||
| eropr.6 | |- ( ph -> T Er W ) |
||
| eropr.7 | |- ( ph -> A C_ U ) |
||
| eropr.8 | |- ( ph -> B C_ V ) |
||
| eropr.9 | |- ( ph -> C C_ W ) |
||
| eropr.10 | |- ( ph -> .+ : ( A X. B ) --> C ) |
||
| eropr.11 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) |
||
| eropr.12 | |- .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) } |
||
| eropr.13 | |- ( ph -> R e. X ) |
||
| eropr.14 | |- ( ph -> S e. Y ) |
||
| Assertion | erov | |- ( ( ph /\ P e. A /\ Q e. B ) -> ( [ P ] R .+^ [ Q ] S ) = [ ( P .+ Q ) ] T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.1 | |- J = ( A /. R ) |
|
| 2 | eropr.2 | |- K = ( B /. S ) |
|
| 3 | eropr.3 | |- ( ph -> T e. Z ) |
|
| 4 | eropr.4 | |- ( ph -> R Er U ) |
|
| 5 | eropr.5 | |- ( ph -> S Er V ) |
|
| 6 | eropr.6 | |- ( ph -> T Er W ) |
|
| 7 | eropr.7 | |- ( ph -> A C_ U ) |
|
| 8 | eropr.8 | |- ( ph -> B C_ V ) |
|
| 9 | eropr.9 | |- ( ph -> C C_ W ) |
|
| 10 | eropr.10 | |- ( ph -> .+ : ( A X. B ) --> C ) |
|
| 11 | eropr.11 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) |
|
| 12 | eropr.12 | |- .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) } |
|
| 13 | eropr.13 | |- ( ph -> R e. X ) |
|
| 14 | eropr.14 | |- ( ph -> S e. Y ) |
|
| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 | erovlem | |- ( ph -> .+^ = ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( ph /\ P e. A /\ Q e. B ) -> .+^ = ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) ) |
| 17 | simprl | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> x = [ P ] R ) |
|
| 18 | 17 | eqeq1d | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( x = [ p ] R <-> [ P ] R = [ p ] R ) ) |
| 19 | simprr | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> y = [ Q ] S ) |
|
| 20 | 19 | eqeq1d | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( y = [ q ] S <-> [ Q ] S = [ q ] S ) ) |
| 21 | 18 20 | anbi12d | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( ( x = [ p ] R /\ y = [ q ] S ) <-> ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) ) ) |
| 22 | 21 | anbi1d | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
| 23 | 22 | 2rexbidv | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
| 24 | 23 | iotabidv | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) = ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
| 25 | ecelqsw | |- ( ( R e. X /\ P e. A ) -> [ P ] R e. ( A /. R ) ) |
|
| 26 | 25 1 | eleqtrrdi | |- ( ( R e. X /\ P e. A ) -> [ P ] R e. J ) |
| 27 | 13 26 | sylan | |- ( ( ph /\ P e. A ) -> [ P ] R e. J ) |
| 28 | 27 | 3adant3 | |- ( ( ph /\ P e. A /\ Q e. B ) -> [ P ] R e. J ) |
| 29 | ecelqsw | |- ( ( S e. Y /\ Q e. B ) -> [ Q ] S e. ( B /. S ) ) |
|
| 30 | 29 2 | eleqtrrdi | |- ( ( S e. Y /\ Q e. B ) -> [ Q ] S e. K ) |
| 31 | 14 30 | sylan | |- ( ( ph /\ Q e. B ) -> [ Q ] S e. K ) |
| 32 | 31 | 3adant2 | |- ( ( ph /\ P e. A /\ Q e. B ) -> [ Q ] S e. K ) |
| 33 | iotaex | |- ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. _V |
|
| 34 | 33 | a1i | |- ( ( ph /\ P e. A /\ Q e. B ) -> ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. _V ) |
| 35 | 16 24 28 32 34 | ovmpod | |- ( ( ph /\ P e. A /\ Q e. B ) -> ( [ P ] R .+^ [ Q ] S ) = ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
| 36 | eqid | |- [ P ] R = [ P ] R |
|
| 37 | eqid | |- [ Q ] S = [ Q ] S |
|
| 38 | 36 37 | pm3.2i | |- ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) |
| 39 | eqid | |- [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T |
|
| 40 | 38 39 | pm3.2i | |- ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T ) |
| 41 | eceq1 | |- ( p = P -> [ p ] R = [ P ] R ) |
|
| 42 | 41 | eqeq2d | |- ( p = P -> ( [ P ] R = [ p ] R <-> [ P ] R = [ P ] R ) ) |
| 43 | 42 | anbi1d | |- ( p = P -> ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) <-> ( [ P ] R = [ P ] R /\ [ Q ] S = [ q ] S ) ) ) |
| 44 | oveq1 | |- ( p = P -> ( p .+ q ) = ( P .+ q ) ) |
|
| 45 | 44 | eceq1d | |- ( p = P -> [ ( p .+ q ) ] T = [ ( P .+ q ) ] T ) |
| 46 | 45 | eqeq2d | |- ( p = P -> ( [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T <-> [ ( P .+ Q ) ] T = [ ( P .+ q ) ] T ) ) |
| 47 | 43 46 | anbi12d | |- ( p = P -> ( ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) <-> ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ q ) ] T ) ) ) |
| 48 | eceq1 | |- ( q = Q -> [ q ] S = [ Q ] S ) |
|
| 49 | 48 | eqeq2d | |- ( q = Q -> ( [ Q ] S = [ q ] S <-> [ Q ] S = [ Q ] S ) ) |
| 50 | 49 | anbi2d | |- ( q = Q -> ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ q ] S ) <-> ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) ) ) |
| 51 | oveq2 | |- ( q = Q -> ( P .+ q ) = ( P .+ Q ) ) |
|
| 52 | 51 | eceq1d | |- ( q = Q -> [ ( P .+ q ) ] T = [ ( P .+ Q ) ] T ) |
| 53 | 52 | eqeq2d | |- ( q = Q -> ( [ ( P .+ Q ) ] T = [ ( P .+ q ) ] T <-> [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T ) ) |
| 54 | 50 53 | anbi12d | |- ( q = Q -> ( ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ q ) ] T ) <-> ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T ) ) ) |
| 55 | 47 54 | rspc2ev | |- ( ( P e. A /\ Q e. B /\ ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T ) ) -> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) |
| 56 | 40 55 | mp3an3 | |- ( ( P e. A /\ Q e. B ) -> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) |
| 57 | 56 | 3adant1 | |- ( ( ph /\ P e. A /\ Q e. B ) -> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) |
| 58 | ecexg | |- ( T e. Z -> [ ( P .+ Q ) ] T e. _V ) |
|
| 59 | 3 58 | syl | |- ( ph -> [ ( P .+ Q ) ] T e. _V ) |
| 60 | 59 | 3ad2ant1 | |- ( ( ph /\ P e. A /\ Q e. B ) -> [ ( P .+ Q ) ] T e. _V ) |
| 61 | simp1 | |- ( ( ph /\ P e. A /\ Q e. B ) -> ph ) |
|
| 62 | 1 2 3 4 5 6 7 8 9 10 11 | eroveu | |- ( ( ph /\ ( [ P ] R e. J /\ [ Q ] S e. K ) ) -> E! z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 63 | 61 28 32 62 | syl12anc | |- ( ( ph /\ P e. A /\ Q e. B ) -> E! z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
| 64 | simpr | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ z = [ ( P .+ Q ) ] T ) -> z = [ ( P .+ Q ) ] T ) |
|
| 65 | 64 | eqeq1d | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ z = [ ( P .+ Q ) ] T ) -> ( z = [ ( p .+ q ) ] T <-> [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) |
| 66 | 65 | anbi2d | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ z = [ ( P .+ Q ) ] T ) -> ( ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) ) |
| 67 | 66 | 2rexbidv | |- ( ( ( ph /\ P e. A /\ Q e. B ) /\ z = [ ( P .+ Q ) ] T ) -> ( E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) ) |
| 68 | 60 63 67 | iota2d | |- ( ( ph /\ P e. A /\ Q e. B ) -> ( E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) <-> ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) = [ ( P .+ Q ) ] T ) ) |
| 69 | 57 68 | mpbid | |- ( ( ph /\ P e. A /\ Q e. B ) -> ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) = [ ( P .+ Q ) ] T ) |
| 70 | 35 69 | eqtrd | |- ( ( ph /\ P e. A /\ Q e. B ) -> ( [ P ] R .+^ [ Q ] S ) = [ ( P .+ Q ) ] T ) |