This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The strong form of the Axiom of Regularity (no sethood requirement on A ), with the axiom itself present as an antecedent. See also zfregs . (Contributed by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epfrs | ⊢ ( ( E Fr 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 2 | snssi | ⊢ ( 𝑧 ∈ 𝐴 → { 𝑧 } ⊆ 𝐴 ) | |
| 3 | 2 | anim2i | ⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴 ) → ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) ) |
| 4 | ssin | ⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ { 𝑧 } ⊆ ( 𝑦 ∩ 𝐴 ) ) | |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | 5 | snss | ⊢ ( 𝑧 ∈ ( 𝑦 ∩ 𝐴 ) ↔ { 𝑧 } ⊆ ( 𝑦 ∩ 𝐴 ) ) |
| 7 | 4 6 | bitr4i | ⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ 𝑧 ∈ ( 𝑦 ∩ 𝐴 ) ) |
| 8 | 3 7 | sylib | ⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ( 𝑦 ∩ 𝐴 ) ) |
| 9 | 8 | ne0d | ⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) |
| 10 | inss2 | ⊢ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 | |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | 11 | inex1 | ⊢ ( 𝑦 ∩ 𝐴 ) ∈ V |
| 13 | 12 | epfrc | ⊢ ( ( E Fr 𝐴 ∧ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) |
| 14 | 10 13 | mp3an2 | ⊢ ( ( E Fr 𝐴 ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) |
| 15 | elin | ⊢ ( 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 16 | 15 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ) |
| 17 | anass | ⊢ ( ( ( 𝑥 ∈ 𝑦 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ) ) | |
| 18 | 16 17 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ) ) |
| 19 | n0 | ⊢ ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) | |
| 20 | elinel1 | ⊢ ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → 𝑤 ∈ 𝑥 ) | |
| 21 | 20 | ancri | ⊢ ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) ) |
| 22 | trel | ⊢ ( Tr 𝑦 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) → 𝑤 ∈ 𝑦 ) ) | |
| 23 | inass | ⊢ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ( 𝑦 ∩ ( 𝐴 ∩ 𝑥 ) ) | |
| 24 | incom | ⊢ ( 𝐴 ∩ 𝑥 ) = ( 𝑥 ∩ 𝐴 ) | |
| 25 | 24 | ineq2i | ⊢ ( 𝑦 ∩ ( 𝐴 ∩ 𝑥 ) ) = ( 𝑦 ∩ ( 𝑥 ∩ 𝐴 ) ) |
| 26 | 23 25 | eqtri | ⊢ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ( 𝑦 ∩ ( 𝑥 ∩ 𝐴 ) ) |
| 27 | 26 | eleq2i | ⊢ ( 𝑤 ∈ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ↔ 𝑤 ∈ ( 𝑦 ∩ ( 𝑥 ∩ 𝐴 ) ) ) |
| 28 | elin | ⊢ ( 𝑤 ∈ ( 𝑦 ∩ ( 𝑥 ∩ 𝐴 ) ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 29 | 27 28 | bitr2i | ⊢ ( ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) ↔ 𝑤 ∈ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ) |
| 30 | ne0i | ⊢ ( 𝑤 ∈ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) | |
| 31 | 29 30 | sylbi | ⊢ ( ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) |
| 32 | 31 | ex | ⊢ ( 𝑤 ∈ 𝑦 → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) |
| 33 | 22 32 | syl6 | ⊢ ( Tr 𝑦 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 34 | 33 | expd | ⊢ ( Tr 𝑦 → ( 𝑤 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) ) |
| 35 | 34 | com34 | ⊢ ( Tr 𝑦 → ( 𝑤 ∈ 𝑥 → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) ) |
| 36 | 35 | impd | ⊢ ( Tr 𝑦 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 37 | 21 36 | syl5 | ⊢ ( Tr 𝑦 → ( 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 38 | 37 | exlimdv | ⊢ ( Tr 𝑦 → ( ∃ 𝑤 𝑤 ∈ ( 𝑥 ∩ 𝐴 ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 39 | 19 38 | biimtrid | ⊢ ( Tr 𝑦 → ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ → ( 𝑥 ∈ 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 40 | 39 | com23 | ⊢ ( Tr 𝑦 → ( 𝑥 ∈ 𝑦 → ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) ) |
| 41 | 40 | imp | ⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑥 ∩ 𝐴 ) ≠ ∅ → ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) ≠ ∅ ) ) |
| 42 | 41 | necon4d | ⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ 𝑦 ) → ( ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ → ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
| 43 | 42 | anim2d | ⊢ ( ( Tr 𝑦 ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
| 44 | 43 | expimpd | ⊢ ( Tr 𝑦 → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
| 45 | 18 44 | biimtrid | ⊢ ( Tr 𝑦 → ( ( 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ∧ ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
| 46 | 45 | reximdv2 | ⊢ ( Tr 𝑦 → ( ∃ 𝑥 ∈ ( 𝑦 ∩ 𝐴 ) ( ( 𝑦 ∩ 𝐴 ) ∩ 𝑥 ) = ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
| 47 | 14 46 | syl5 | ⊢ ( Tr 𝑦 → ( ( E Fr 𝐴 ∧ ( 𝑦 ∩ 𝐴 ) ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
| 48 | 47 | expcomd | ⊢ ( Tr 𝑦 → ( ( 𝑦 ∩ 𝐴 ) ≠ ∅ → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
| 49 | 9 48 | syl5 | ⊢ ( Tr 𝑦 → ( ( { 𝑧 } ⊆ 𝑦 ∧ 𝑧 ∈ 𝐴 ) → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
| 50 | 49 | expd | ⊢ ( Tr 𝑦 → ( { 𝑧 } ⊆ 𝑦 → ( 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) ) |
| 51 | 50 | impcom | ⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ) → ( 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
| 52 | 51 | 3adant3 | ⊢ ( ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀ 𝑤 ( ( { 𝑧 } ⊆ 𝑤 ∧ Tr 𝑤 ) → 𝑦 ⊆ 𝑤 ) ) → ( 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) ) |
| 53 | vsnex | ⊢ { 𝑧 } ∈ V | |
| 54 | 53 | tz9.1 | ⊢ ∃ 𝑦 ( { 𝑧 } ⊆ 𝑦 ∧ Tr 𝑦 ∧ ∀ 𝑤 ( ( { 𝑧 } ⊆ 𝑤 ∧ Tr 𝑤 ) → 𝑦 ⊆ 𝑤 ) ) |
| 55 | 52 54 | exlimiiv | ⊢ ( 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
| 56 | 55 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 ∈ 𝐴 → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
| 57 | 1 56 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( E Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) ) |
| 58 | 57 | impcom | ⊢ ( ( E Fr 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |