This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The strong form of the Axiom of Regularity (no sethood requirement on A ), with the axiom itself present as an antecedent. See also zfregs . (Contributed by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epfrs | |- ( ( _E Fr A /\ A =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. z z e. A ) |
|
| 2 | snssi | |- ( z e. A -> { z } C_ A ) |
|
| 3 | 2 | anim2i | |- ( ( { z } C_ y /\ z e. A ) -> ( { z } C_ y /\ { z } C_ A ) ) |
| 4 | ssin | |- ( ( { z } C_ y /\ { z } C_ A ) <-> { z } C_ ( y i^i A ) ) |
|
| 5 | vex | |- z e. _V |
|
| 6 | 5 | snss | |- ( z e. ( y i^i A ) <-> { z } C_ ( y i^i A ) ) |
| 7 | 4 6 | bitr4i | |- ( ( { z } C_ y /\ { z } C_ A ) <-> z e. ( y i^i A ) ) |
| 8 | 3 7 | sylib | |- ( ( { z } C_ y /\ z e. A ) -> z e. ( y i^i A ) ) |
| 9 | 8 | ne0d | |- ( ( { z } C_ y /\ z e. A ) -> ( y i^i A ) =/= (/) ) |
| 10 | inss2 | |- ( y i^i A ) C_ A |
|
| 11 | vex | |- y e. _V |
|
| 12 | 11 | inex1 | |- ( y i^i A ) e. _V |
| 13 | 12 | epfrc | |- ( ( _E Fr A /\ ( y i^i A ) C_ A /\ ( y i^i A ) =/= (/) ) -> E. x e. ( y i^i A ) ( ( y i^i A ) i^i x ) = (/) ) |
| 14 | 10 13 | mp3an2 | |- ( ( _E Fr A /\ ( y i^i A ) =/= (/) ) -> E. x e. ( y i^i A ) ( ( y i^i A ) i^i x ) = (/) ) |
| 15 | elin | |- ( x e. ( y i^i A ) <-> ( x e. y /\ x e. A ) ) |
|
| 16 | 15 | anbi1i | |- ( ( x e. ( y i^i A ) /\ ( ( y i^i A ) i^i x ) = (/) ) <-> ( ( x e. y /\ x e. A ) /\ ( ( y i^i A ) i^i x ) = (/) ) ) |
| 17 | anass | |- ( ( ( x e. y /\ x e. A ) /\ ( ( y i^i A ) i^i x ) = (/) ) <-> ( x e. y /\ ( x e. A /\ ( ( y i^i A ) i^i x ) = (/) ) ) ) |
|
| 18 | 16 17 | bitri | |- ( ( x e. ( y i^i A ) /\ ( ( y i^i A ) i^i x ) = (/) ) <-> ( x e. y /\ ( x e. A /\ ( ( y i^i A ) i^i x ) = (/) ) ) ) |
| 19 | n0 | |- ( ( x i^i A ) =/= (/) <-> E. w w e. ( x i^i A ) ) |
|
| 20 | elinel1 | |- ( w e. ( x i^i A ) -> w e. x ) |
|
| 21 | 20 | ancri | |- ( w e. ( x i^i A ) -> ( w e. x /\ w e. ( x i^i A ) ) ) |
| 22 | trel | |- ( Tr y -> ( ( w e. x /\ x e. y ) -> w e. y ) ) |
|
| 23 | inass | |- ( ( y i^i A ) i^i x ) = ( y i^i ( A i^i x ) ) |
|
| 24 | incom | |- ( A i^i x ) = ( x i^i A ) |
|
| 25 | 24 | ineq2i | |- ( y i^i ( A i^i x ) ) = ( y i^i ( x i^i A ) ) |
| 26 | 23 25 | eqtri | |- ( ( y i^i A ) i^i x ) = ( y i^i ( x i^i A ) ) |
| 27 | 26 | eleq2i | |- ( w e. ( ( y i^i A ) i^i x ) <-> w e. ( y i^i ( x i^i A ) ) ) |
| 28 | elin | |- ( w e. ( y i^i ( x i^i A ) ) <-> ( w e. y /\ w e. ( x i^i A ) ) ) |
|
| 29 | 27 28 | bitr2i | |- ( ( w e. y /\ w e. ( x i^i A ) ) <-> w e. ( ( y i^i A ) i^i x ) ) |
| 30 | ne0i | |- ( w e. ( ( y i^i A ) i^i x ) -> ( ( y i^i A ) i^i x ) =/= (/) ) |
|
| 31 | 29 30 | sylbi | |- ( ( w e. y /\ w e. ( x i^i A ) ) -> ( ( y i^i A ) i^i x ) =/= (/) ) |
| 32 | 31 | ex | |- ( w e. y -> ( w e. ( x i^i A ) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) |
| 33 | 22 32 | syl6 | |- ( Tr y -> ( ( w e. x /\ x e. y ) -> ( w e. ( x i^i A ) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) |
| 34 | 33 | expd | |- ( Tr y -> ( w e. x -> ( x e. y -> ( w e. ( x i^i A ) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) ) |
| 35 | 34 | com34 | |- ( Tr y -> ( w e. x -> ( w e. ( x i^i A ) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) ) |
| 36 | 35 | impd | |- ( Tr y -> ( ( w e. x /\ w e. ( x i^i A ) ) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) |
| 37 | 21 36 | syl5 | |- ( Tr y -> ( w e. ( x i^i A ) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) |
| 38 | 37 | exlimdv | |- ( Tr y -> ( E. w w e. ( x i^i A ) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) |
| 39 | 19 38 | biimtrid | |- ( Tr y -> ( ( x i^i A ) =/= (/) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) |
| 40 | 39 | com23 | |- ( Tr y -> ( x e. y -> ( ( x i^i A ) =/= (/) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) |
| 41 | 40 | imp | |- ( ( Tr y /\ x e. y ) -> ( ( x i^i A ) =/= (/) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) |
| 42 | 41 | necon4d | |- ( ( Tr y /\ x e. y ) -> ( ( ( y i^i A ) i^i x ) = (/) -> ( x i^i A ) = (/) ) ) |
| 43 | 42 | anim2d | |- ( ( Tr y /\ x e. y ) -> ( ( x e. A /\ ( ( y i^i A ) i^i x ) = (/) ) -> ( x e. A /\ ( x i^i A ) = (/) ) ) ) |
| 44 | 43 | expimpd | |- ( Tr y -> ( ( x e. y /\ ( x e. A /\ ( ( y i^i A ) i^i x ) = (/) ) ) -> ( x e. A /\ ( x i^i A ) = (/) ) ) ) |
| 45 | 18 44 | biimtrid | |- ( Tr y -> ( ( x e. ( y i^i A ) /\ ( ( y i^i A ) i^i x ) = (/) ) -> ( x e. A /\ ( x i^i A ) = (/) ) ) ) |
| 46 | 45 | reximdv2 | |- ( Tr y -> ( E. x e. ( y i^i A ) ( ( y i^i A ) i^i x ) = (/) -> E. x e. A ( x i^i A ) = (/) ) ) |
| 47 | 14 46 | syl5 | |- ( Tr y -> ( ( _E Fr A /\ ( y i^i A ) =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) ) |
| 48 | 47 | expcomd | |- ( Tr y -> ( ( y i^i A ) =/= (/) -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) |
| 49 | 9 48 | syl5 | |- ( Tr y -> ( ( { z } C_ y /\ z e. A ) -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) |
| 50 | 49 | expd | |- ( Tr y -> ( { z } C_ y -> ( z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) ) |
| 51 | 50 | impcom | |- ( ( { z } C_ y /\ Tr y ) -> ( z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) |
| 52 | 51 | 3adant3 | |- ( ( { z } C_ y /\ Tr y /\ A. w ( ( { z } C_ w /\ Tr w ) -> y C_ w ) ) -> ( z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) |
| 53 | vsnex | |- { z } e. _V |
|
| 54 | 53 | tz9.1 | |- E. y ( { z } C_ y /\ Tr y /\ A. w ( ( { z } C_ w /\ Tr w ) -> y C_ w ) ) |
| 55 | 52 54 | exlimiiv | |- ( z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) |
| 56 | 55 | exlimiv | |- ( E. z z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) |
| 57 | 1 56 | sylbi | |- ( A =/= (/) -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) |
| 58 | 57 | impcom | |- ( ( _E Fr A /\ A =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) |