This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dif1card | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ) → ( card ‘ 𝐴 ) = suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑋 } ) ∈ Fin ) | |
| 2 | isfi | ⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∈ Fin ↔ ∃ 𝑚 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) | |
| 3 | simp3 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) | |
| 4 | en2sn | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ) → { 𝑋 } ≈ { 𝑚 } ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → { 𝑋 } ≈ { 𝑚 } ) |
| 6 | disjdifr | ⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ | |
| 7 | 6 | a1i | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ ) |
| 8 | nnord | ⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) | |
| 9 | ordirr | ⊢ ( Ord 𝑚 → ¬ 𝑚 ∈ 𝑚 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑚 ∈ ω → ¬ 𝑚 ∈ 𝑚 ) |
| 11 | disjsn | ⊢ ( ( 𝑚 ∩ { 𝑚 } ) = ∅ ↔ ¬ 𝑚 ∈ 𝑚 ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝑚 ∈ ω → ( 𝑚 ∩ { 𝑚 } ) = ∅ ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( 𝑚 ∩ { 𝑚 } ) = ∅ ) |
| 14 | unen | ⊢ ( ( ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ∧ { 𝑋 } ≈ { 𝑚 } ) ∧ ( ( ( 𝐴 ∖ { 𝑋 } ) ∩ { 𝑋 } ) = ∅ ∧ ( 𝑚 ∩ { 𝑚 } ) = ∅ ) ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑚 ∪ { 𝑚 } ) ) | |
| 15 | 3 5 7 13 14 | syl22anc | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑚 ∪ { 𝑚 } ) ) |
| 16 | difsnid | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝐴 ) | |
| 17 | df-suc | ⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) | |
| 18 | 17 | eqcomi | ⊢ ( 𝑚 ∪ { 𝑚 } ) = suc 𝑚 |
| 19 | 18 | a1i | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑚 ∪ { 𝑚 } ) = suc 𝑚 ) |
| 20 | 16 19 | breq12d | ⊢ ( 𝑋 ∈ 𝐴 → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑚 ∪ { 𝑚 } ) ↔ 𝐴 ≈ suc 𝑚 ) ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( ( ( 𝐴 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ≈ ( 𝑚 ∪ { 𝑚 } ) ↔ 𝐴 ≈ suc 𝑚 ) ) |
| 22 | 15 21 | mpbid | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → 𝐴 ≈ suc 𝑚 ) |
| 23 | peano2 | ⊢ ( 𝑚 ∈ ω → suc 𝑚 ∈ ω ) | |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → suc 𝑚 ∈ ω ) |
| 25 | cardennn | ⊢ ( ( 𝐴 ≈ suc 𝑚 ∧ suc 𝑚 ∈ ω ) → ( card ‘ 𝐴 ) = suc 𝑚 ) | |
| 26 | 22 24 25 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( card ‘ 𝐴 ) = suc 𝑚 ) |
| 27 | cardennn | ⊢ ( ( ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) = 𝑚 ) | |
| 28 | 27 | ancoms | ⊢ ( ( 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) = 𝑚 ) |
| 29 | 28 | 3adant1 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) = 𝑚 ) |
| 30 | suceq | ⊢ ( ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) = 𝑚 → suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) = suc 𝑚 ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) = suc 𝑚 ) |
| 32 | 26 31 | eqtr4d | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( card ‘ 𝐴 ) = suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) ) |
| 33 | 32 | 3expib | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( card ‘ 𝐴 ) = suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) ) ) |
| 34 | 33 | com12 | ⊢ ( ( 𝑚 ∈ ω ∧ ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 ) → ( 𝑋 ∈ 𝐴 → ( card ‘ 𝐴 ) = suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) ) ) |
| 35 | 34 | rexlimiva | ⊢ ( ∃ 𝑚 ∈ ω ( 𝐴 ∖ { 𝑋 } ) ≈ 𝑚 → ( 𝑋 ∈ 𝐴 → ( card ‘ 𝐴 ) = suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) ) ) |
| 36 | 2 35 | sylbi | ⊢ ( ( 𝐴 ∖ { 𝑋 } ) ∈ Fin → ( 𝑋 ∈ 𝐴 → ( card ‘ 𝐴 ) = suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) ) ) |
| 37 | 1 36 | syl | ⊢ ( 𝐴 ∈ Fin → ( 𝑋 ∈ 𝐴 → ( card ‘ 𝐴 ) = suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ) → ( card ‘ 𝐴 ) = suc ( card ‘ ( 𝐴 ∖ { 𝑋 } ) ) ) |