This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2other2 | |- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { U. ( P \ { X } ) } ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2eleq | |- ( ( X e. P /\ P ~~ 2o ) -> P = { X , U. ( P \ { X } ) } ) |
|
| 2 | prcom | |- { X , U. ( P \ { X } ) } = { U. ( P \ { X } ) , X } |
|
| 3 | 1 2 | eqtrdi | |- ( ( X e. P /\ P ~~ 2o ) -> P = { U. ( P \ { X } ) , X } ) |
| 4 | 3 | difeq1d | |- ( ( X e. P /\ P ~~ 2o ) -> ( P \ { U. ( P \ { X } ) } ) = ( { U. ( P \ { X } ) , X } \ { U. ( P \ { X } ) } ) ) |
| 5 | difprsnss | |- ( { U. ( P \ { X } ) , X } \ { U. ( P \ { X } ) } ) C_ { X } |
|
| 6 | 4 5 | eqsstrdi | |- ( ( X e. P /\ P ~~ 2o ) -> ( P \ { U. ( P \ { X } ) } ) C_ { X } ) |
| 7 | simpl | |- ( ( X e. P /\ P ~~ 2o ) -> X e. P ) |
|
| 8 | 1onn | |- 1o e. _om |
|
| 9 | simpr | |- ( ( X e. P /\ P ~~ 2o ) -> P ~~ 2o ) |
|
| 10 | df-2o | |- 2o = suc 1o |
|
| 11 | 9 10 | breqtrdi | |- ( ( X e. P /\ P ~~ 2o ) -> P ~~ suc 1o ) |
| 12 | dif1ennn | |- ( ( 1o e. _om /\ P ~~ suc 1o /\ X e. P ) -> ( P \ { X } ) ~~ 1o ) |
|
| 13 | 8 11 7 12 | mp3an2i | |- ( ( X e. P /\ P ~~ 2o ) -> ( P \ { X } ) ~~ 1o ) |
| 14 | en1uniel | |- ( ( P \ { X } ) ~~ 1o -> U. ( P \ { X } ) e. ( P \ { X } ) ) |
|
| 15 | eldifsni | |- ( U. ( P \ { X } ) e. ( P \ { X } ) -> U. ( P \ { X } ) =/= X ) |
|
| 16 | 13 14 15 | 3syl | |- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { X } ) =/= X ) |
| 17 | 16 | necomd | |- ( ( X e. P /\ P ~~ 2o ) -> X =/= U. ( P \ { X } ) ) |
| 18 | eldifsn | |- ( X e. ( P \ { U. ( P \ { X } ) } ) <-> ( X e. P /\ X =/= U. ( P \ { X } ) ) ) |
|
| 19 | 7 17 18 | sylanbrc | |- ( ( X e. P /\ P ~~ 2o ) -> X e. ( P \ { U. ( P \ { X } ) } ) ) |
| 20 | 19 | snssd | |- ( ( X e. P /\ P ~~ 2o ) -> { X } C_ ( P \ { U. ( P \ { X } ) } ) ) |
| 21 | 6 20 | eqssd | |- ( ( X e. P /\ P ~~ 2o ) -> ( P \ { U. ( P \ { X } ) } ) = { X } ) |
| 22 | 21 | unieqd | |- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { U. ( P \ { X } ) } ) = U. { X } ) |
| 23 | unisng | |- ( X e. P -> U. { X } = X ) |
|
| 24 | 23 | adantr | |- ( ( X e. P /\ P ~~ 2o ) -> U. { X } = X ) |
| 25 | 22 24 | eqtrd | |- ( ( X e. P /\ P ~~ 2o ) -> U. ( P \ { U. ( P \ { X } ) } ) = X ) |