This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logltb | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogiso | ⊢ ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) | |
| 2 | df-isom | ⊢ ( ( log ↾ ℝ+ ) Isom < , < ( ℝ+ , ℝ ) ↔ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ∧ ∀ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ+ ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ ∧ ∀ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ+ ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ) |
| 4 | 3 | simpri | ⊢ ∀ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ+ ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) |
| 5 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 < 𝑦 ↔ 𝐴 < 𝑦 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( ( log ↾ ℝ+ ) ‘ 𝐴 ) ) | |
| 7 | 6 | breq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ) |
| 8 | 5 7 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ↔ ( 𝐴 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ) ) |
| 9 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 < 𝑦 ↔ 𝐴 < 𝐵 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( ( log ↾ ℝ+ ) ‘ 𝑦 ) = ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑦 = 𝐵 → ( ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) ) |
| 12 | 9 11 | bibi12d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) ↔ ( 𝐴 < 𝐵 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) ) ) |
| 13 | 8 12 | rspc2v | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ ℝ+ ∀ 𝑦 ∈ ℝ+ ( 𝑥 < 𝑦 ↔ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) < ( ( log ↾ ℝ+ ) ‘ 𝑦 ) ) → ( 𝐴 < 𝐵 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) ) ) |
| 14 | 4 13 | mpi | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ) ) |
| 15 | fvres | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝐴 ) = ( log ‘ 𝐴 ) ) | |
| 16 | fvres | ⊢ ( 𝐵 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝐵 ) = ( log ‘ 𝐵 ) ) | |
| 17 | 15 16 | breqan12d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( log ↾ ℝ+ ) ‘ 𝐴 ) < ( ( log ↾ ℝ+ ) ‘ 𝐵 ) ↔ ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ) ) |
| 18 | 14 17 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( log ‘ 𝐴 ) < ( log ‘ 𝐵 ) ) ) |