This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elz2 | ⊢ ( 𝑁 ∈ ℤ ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) | |
| 2 | nn0p1nn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℕ ) |
| 4 | 1nn | ⊢ 1 ∈ ℕ | |
| 5 | 4 | a1i | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℕ ) |
| 6 | recn | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 11 | 10 | eqcomd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) |
| 12 | rspceov | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) | |
| 13 | 3 5 11 12 | syl3anc | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 14 | 4 | a1i | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 1 ∈ ℕ ) |
| 15 | 6 | adantr | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 16 | negsub | ⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 1 + - 𝑁 ) = ( 1 − 𝑁 ) ) | |
| 17 | 8 15 16 | sylancr | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 + - 𝑁 ) = ( 1 − 𝑁 ) ) |
| 18 | simpr | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ0 ) | |
| 19 | nnnn0addcl | ⊢ ( ( 1 ∈ ℕ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 + - 𝑁 ) ∈ ℕ ) | |
| 20 | 4 18 19 | sylancr | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 + - 𝑁 ) ∈ ℕ ) |
| 21 | 17 20 | eqeltrrd | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 − 𝑁 ) ∈ ℕ ) |
| 22 | nncan | ⊢ ( ( 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 1 − ( 1 − 𝑁 ) ) = 𝑁 ) | |
| 23 | 8 15 22 | sylancr | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ( 1 − ( 1 − 𝑁 ) ) = 𝑁 ) |
| 24 | 23 | eqcomd | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 = ( 1 − ( 1 − 𝑁 ) ) ) |
| 25 | rspceov | ⊢ ( ( 1 ∈ ℕ ∧ ( 1 − 𝑁 ) ∈ ℕ ∧ 𝑁 = ( 1 − ( 1 − 𝑁 ) ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) | |
| 26 | 14 21 24 25 | syl3anc | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 27 | 13 26 | jaodan | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 28 | nnre | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) | |
| 29 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 30 | resubcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 − 𝑦 ) ∈ ℝ ) | |
| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 − 𝑦 ) ∈ ℝ ) |
| 32 | letric | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦 ) ) | |
| 33 | 29 28 32 | syl2anr | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦 ) ) |
| 34 | nnnn0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) | |
| 35 | nnnn0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) | |
| 36 | nn0sub | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) | |
| 37 | 34 35 36 | syl2anr | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 38 | nn0sub | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℕ0 ) ) | |
| 39 | 35 34 38 | syl2an | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ≤ 𝑦 ↔ ( 𝑦 − 𝑥 ) ∈ ℕ0 ) ) |
| 40 | nncn | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) | |
| 41 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 42 | negsubdi2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → - ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ) | |
| 43 | 40 41 42 | syl2an | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → - ( 𝑥 − 𝑦 ) = ( 𝑦 − 𝑥 ) ) |
| 44 | 43 | eleq1d | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( - ( 𝑥 − 𝑦 ) ∈ ℕ0 ↔ ( 𝑦 − 𝑥 ) ∈ ℕ0 ) ) |
| 45 | 39 44 | bitr4d | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ≤ 𝑦 ↔ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 46 | 37 45 | orbi12d | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ≤ 𝑥 ∨ 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) ) |
| 47 | 33 46 | mpbid | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 48 | 31 47 | jca | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑥 − 𝑦 ) ∈ ℝ ∧ ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) ) |
| 49 | eleq1 | ⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( 𝑁 ∈ ℝ ↔ ( 𝑥 − 𝑦 ) ∈ ℝ ) ) | |
| 50 | eleq1 | ⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( 𝑁 ∈ ℕ0 ↔ ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) | |
| 51 | negeq | ⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → - 𝑁 = - ( 𝑥 − 𝑦 ) ) | |
| 52 | 51 | eleq1d | ⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( - 𝑁 ∈ ℕ0 ↔ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) |
| 53 | 50 52 | orbi12d | ⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ↔ ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) ) |
| 54 | 49 53 | anbi12d | ⊢ ( 𝑁 = ( 𝑥 − 𝑦 ) → ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ↔ ( ( 𝑥 − 𝑦 ) ∈ ℝ ∧ ( ( 𝑥 − 𝑦 ) ∈ ℕ0 ∨ - ( 𝑥 − 𝑦 ) ∈ ℕ0 ) ) ) ) |
| 55 | 48 54 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑁 = ( 𝑥 − 𝑦 ) → ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) ) |
| 56 | 55 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) → ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| 57 | 27 56 | impbii | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |
| 58 | 1 57 | bitri | ⊢ ( 𝑁 ∈ ℤ ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 − 𝑦 ) ) |