This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elz2 | |- ( N e. ZZ <-> E. x e. NN E. y e. NN N = ( x - y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 | |- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
|
| 2 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 3 | 2 | adantl | |- ( ( N e. RR /\ N e. NN0 ) -> ( N + 1 ) e. NN ) |
| 4 | 1nn | |- 1 e. NN |
|
| 5 | 4 | a1i | |- ( ( N e. RR /\ N e. NN0 ) -> 1 e. NN ) |
| 6 | recn | |- ( N e. RR -> N e. CC ) |
|
| 7 | 6 | adantr | |- ( ( N e. RR /\ N e. NN0 ) -> N e. CC ) |
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( N e. RR /\ N e. NN0 ) -> ( ( N + 1 ) - 1 ) = N ) |
| 11 | 10 | eqcomd | |- ( ( N e. RR /\ N e. NN0 ) -> N = ( ( N + 1 ) - 1 ) ) |
| 12 | rspceov | |- ( ( ( N + 1 ) e. NN /\ 1 e. NN /\ N = ( ( N + 1 ) - 1 ) ) -> E. x e. NN E. y e. NN N = ( x - y ) ) |
|
| 13 | 3 5 11 12 | syl3anc | |- ( ( N e. RR /\ N e. NN0 ) -> E. x e. NN E. y e. NN N = ( x - y ) ) |
| 14 | 4 | a1i | |- ( ( N e. RR /\ -u N e. NN0 ) -> 1 e. NN ) |
| 15 | 6 | adantr | |- ( ( N e. RR /\ -u N e. NN0 ) -> N e. CC ) |
| 16 | negsub | |- ( ( 1 e. CC /\ N e. CC ) -> ( 1 + -u N ) = ( 1 - N ) ) |
|
| 17 | 8 15 16 | sylancr | |- ( ( N e. RR /\ -u N e. NN0 ) -> ( 1 + -u N ) = ( 1 - N ) ) |
| 18 | simpr | |- ( ( N e. RR /\ -u N e. NN0 ) -> -u N e. NN0 ) |
|
| 19 | nnnn0addcl | |- ( ( 1 e. NN /\ -u N e. NN0 ) -> ( 1 + -u N ) e. NN ) |
|
| 20 | 4 18 19 | sylancr | |- ( ( N e. RR /\ -u N e. NN0 ) -> ( 1 + -u N ) e. NN ) |
| 21 | 17 20 | eqeltrrd | |- ( ( N e. RR /\ -u N e. NN0 ) -> ( 1 - N ) e. NN ) |
| 22 | nncan | |- ( ( 1 e. CC /\ N e. CC ) -> ( 1 - ( 1 - N ) ) = N ) |
|
| 23 | 8 15 22 | sylancr | |- ( ( N e. RR /\ -u N e. NN0 ) -> ( 1 - ( 1 - N ) ) = N ) |
| 24 | 23 | eqcomd | |- ( ( N e. RR /\ -u N e. NN0 ) -> N = ( 1 - ( 1 - N ) ) ) |
| 25 | rspceov | |- ( ( 1 e. NN /\ ( 1 - N ) e. NN /\ N = ( 1 - ( 1 - N ) ) ) -> E. x e. NN E. y e. NN N = ( x - y ) ) |
|
| 26 | 14 21 24 25 | syl3anc | |- ( ( N e. RR /\ -u N e. NN0 ) -> E. x e. NN E. y e. NN N = ( x - y ) ) |
| 27 | 13 26 | jaodan | |- ( ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> E. x e. NN E. y e. NN N = ( x - y ) ) |
| 28 | nnre | |- ( x e. NN -> x e. RR ) |
|
| 29 | nnre | |- ( y e. NN -> y e. RR ) |
|
| 30 | resubcl | |- ( ( x e. RR /\ y e. RR ) -> ( x - y ) e. RR ) |
|
| 31 | 28 29 30 | syl2an | |- ( ( x e. NN /\ y e. NN ) -> ( x - y ) e. RR ) |
| 32 | letric | |- ( ( y e. RR /\ x e. RR ) -> ( y <_ x \/ x <_ y ) ) |
|
| 33 | 29 28 32 | syl2anr | |- ( ( x e. NN /\ y e. NN ) -> ( y <_ x \/ x <_ y ) ) |
| 34 | nnnn0 | |- ( y e. NN -> y e. NN0 ) |
|
| 35 | nnnn0 | |- ( x e. NN -> x e. NN0 ) |
|
| 36 | nn0sub | |- ( ( y e. NN0 /\ x e. NN0 ) -> ( y <_ x <-> ( x - y ) e. NN0 ) ) |
|
| 37 | 34 35 36 | syl2anr | |- ( ( x e. NN /\ y e. NN ) -> ( y <_ x <-> ( x - y ) e. NN0 ) ) |
| 38 | nn0sub | |- ( ( x e. NN0 /\ y e. NN0 ) -> ( x <_ y <-> ( y - x ) e. NN0 ) ) |
|
| 39 | 35 34 38 | syl2an | |- ( ( x e. NN /\ y e. NN ) -> ( x <_ y <-> ( y - x ) e. NN0 ) ) |
| 40 | nncn | |- ( x e. NN -> x e. CC ) |
|
| 41 | nncn | |- ( y e. NN -> y e. CC ) |
|
| 42 | negsubdi2 | |- ( ( x e. CC /\ y e. CC ) -> -u ( x - y ) = ( y - x ) ) |
|
| 43 | 40 41 42 | syl2an | |- ( ( x e. NN /\ y e. NN ) -> -u ( x - y ) = ( y - x ) ) |
| 44 | 43 | eleq1d | |- ( ( x e. NN /\ y e. NN ) -> ( -u ( x - y ) e. NN0 <-> ( y - x ) e. NN0 ) ) |
| 45 | 39 44 | bitr4d | |- ( ( x e. NN /\ y e. NN ) -> ( x <_ y <-> -u ( x - y ) e. NN0 ) ) |
| 46 | 37 45 | orbi12d | |- ( ( x e. NN /\ y e. NN ) -> ( ( y <_ x \/ x <_ y ) <-> ( ( x - y ) e. NN0 \/ -u ( x - y ) e. NN0 ) ) ) |
| 47 | 33 46 | mpbid | |- ( ( x e. NN /\ y e. NN ) -> ( ( x - y ) e. NN0 \/ -u ( x - y ) e. NN0 ) ) |
| 48 | 31 47 | jca | |- ( ( x e. NN /\ y e. NN ) -> ( ( x - y ) e. RR /\ ( ( x - y ) e. NN0 \/ -u ( x - y ) e. NN0 ) ) ) |
| 49 | eleq1 | |- ( N = ( x - y ) -> ( N e. RR <-> ( x - y ) e. RR ) ) |
|
| 50 | eleq1 | |- ( N = ( x - y ) -> ( N e. NN0 <-> ( x - y ) e. NN0 ) ) |
|
| 51 | negeq | |- ( N = ( x - y ) -> -u N = -u ( x - y ) ) |
|
| 52 | 51 | eleq1d | |- ( N = ( x - y ) -> ( -u N e. NN0 <-> -u ( x - y ) e. NN0 ) ) |
| 53 | 50 52 | orbi12d | |- ( N = ( x - y ) -> ( ( N e. NN0 \/ -u N e. NN0 ) <-> ( ( x - y ) e. NN0 \/ -u ( x - y ) e. NN0 ) ) ) |
| 54 | 49 53 | anbi12d | |- ( N = ( x - y ) -> ( ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) <-> ( ( x - y ) e. RR /\ ( ( x - y ) e. NN0 \/ -u ( x - y ) e. NN0 ) ) ) ) |
| 55 | 48 54 | syl5ibrcom | |- ( ( x e. NN /\ y e. NN ) -> ( N = ( x - y ) -> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) ) |
| 56 | 55 | rexlimivv | |- ( E. x e. NN E. y e. NN N = ( x - y ) -> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
| 57 | 27 56 | impbii | |- ( ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) <-> E. x e. NN E. y e. NN N = ( x - y ) ) |
| 58 | 1 57 | bitri | |- ( N e. ZZ <-> E. x e. NN E. y e. NN N = ( x - y ) ) |