This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a one-parameter class of sets. (Contributed by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmptrab.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| elmptrab.s1 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| elmptrab.s2 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | ||
| elmptrab.ex | ⊢ ( 𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉 ) | ||
| Assertion | elmptrab | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmptrab.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 2 | elmptrab.s1 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | elmptrab.s2 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| 4 | elmptrab.ex | ⊢ ( 𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉 ) | |
| 5 | 1 | mptrcl | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝐷 ) |
| 6 | simp1 | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) → 𝑋 ∈ 𝐷 ) | |
| 7 | csbeq1 | ⊢ ( 𝑧 = 𝑋 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 8 | dfsbcq | ⊢ ( 𝑧 = 𝑋 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 9 | 7 8 | rabeqbidv | ⊢ ( 𝑧 = 𝑋 → { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } = { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
| 10 | nfcv | ⊢ Ⅎ 𝑧 { 𝑦 ∈ 𝐵 ∣ 𝜑 } | |
| 11 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 | |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 13 | 11 12 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } |
| 14 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 15 | sbceq1a | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 16 | 14 15 | rabeqbidv | ⊢ ( 𝑥 = 𝑧 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] 𝜑 } ) |
| 17 | nfcv | ⊢ Ⅎ 𝑤 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 18 | nfcv | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 19 | nfcv | ⊢ Ⅎ 𝑦 𝑧 | |
| 20 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 | |
| 21 | 19 20 | nfsbcw | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 |
| 22 | nfv | ⊢ Ⅎ 𝑤 [ 𝑧 / 𝑥 ] 𝜑 | |
| 23 | sbccom | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 24 | sbceq1a | ⊢ ( 𝑦 = 𝑤 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 25 | 24 | equcoms | ⊢ ( 𝑤 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 26 | 23 25 | bitr4id | ⊢ ( 𝑤 = 𝑦 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 27 | 17 18 21 22 26 | cbvrabw | ⊢ { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } = { 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] 𝜑 } |
| 28 | 16 27 | eqtr4di | ⊢ ( 𝑥 = 𝑧 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
| 29 | 10 13 28 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐷 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) = ( 𝑧 ∈ 𝐷 ↦ { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
| 30 | 1 29 | eqtri | ⊢ 𝐹 = ( 𝑧 ∈ 𝐷 ↦ { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
| 31 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐷 | |
| 32 | 12 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 |
| 33 | 31 32 | nfim | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐷 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
| 34 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷 ) ) | |
| 35 | 14 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∈ 𝑉 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) |
| 36 | 34 35 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉 ) ↔ ( 𝑧 ∈ 𝐷 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) ) |
| 37 | 33 36 4 | chvarfv | ⊢ ( 𝑧 ∈ 𝐷 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
| 38 | rabexg | ⊢ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 → { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ∈ V ) | |
| 39 | 37 38 | syl | ⊢ ( 𝑧 ∈ 𝐷 → { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ∈ V ) |
| 40 | 9 30 39 | fvmpt3 | ⊢ ( 𝑋 ∈ 𝐷 → ( 𝐹 ‘ 𝑋 ) = { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
| 41 | 40 | eleq2d | ⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) ) |
| 42 | dfsbcq | ⊢ ( 𝑤 = 𝑌 → ( [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑌 / 𝑦 ] 𝜑 ) ) | |
| 43 | 42 | sbcbidv | ⊢ ( 𝑤 = 𝑌 → ( [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
| 44 | 43 | elrab | ⊢ ( 𝑌 ∈ { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ↔ ( 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
| 45 | 44 | a1i | ⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ↔ ( 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) ) |
| 46 | nfcvd | ⊢ ( 𝑋 ∈ 𝐷 → Ⅎ 𝑥 𝐶 ) | |
| 47 | 46 3 | csbiegf | ⊢ ( 𝑋 ∈ 𝐷 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 48 | 47 | eleq2d | ⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ 𝑌 ∈ 𝐶 ) ) |
| 49 | 48 | anbi1d | ⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ↔ ( 𝑌 ∈ 𝐶 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) ) |
| 50 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 51 | nfv | ⊢ Ⅎ 𝑦 𝜓 | |
| 52 | nfv | ⊢ Ⅎ 𝑥 𝑌 ∈ 𝐶 | |
| 53 | 50 51 52 2 | sbc2iegf | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ) → ( [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
| 54 | 53 | pm5.32da | ⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑌 ∈ 𝐶 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ↔ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
| 55 | 45 49 54 | 3bitrd | ⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ↔ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
| 56 | 3anass | ⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ↔ ( 𝑋 ∈ 𝐷 ∧ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) | |
| 57 | 56 | baibr | ⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
| 58 | 41 55 57 | 3bitrd | ⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
| 59 | 5 6 58 | pm5.21nii | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) |