This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015) (Revised by AV, 26-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmptrab2.f | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| elmptrab2.s1 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| elmptrab2.s2 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | ||
| elmptrab2.ex | ⊢ 𝐵 ∈ V | ||
| elmptrab2.rc | ⊢ ( 𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊 ) | ||
| Assertion | elmptrab2 | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmptrab2.f | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) | |
| 2 | elmptrab2.s1 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | elmptrab2.s2 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| 4 | elmptrab2.ex | ⊢ 𝐵 ∈ V | |
| 5 | elmptrab2.rc | ⊢ ( 𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊 ) | |
| 6 | 4 | a1i | ⊢ ( 𝑥 ∈ V → 𝐵 ∈ V ) |
| 7 | 1 2 3 6 | elmptrab | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) |
| 8 | 3simpc | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) → ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) | |
| 9 | 5 | elexd | ⊢ ( 𝑌 ∈ 𝐶 → 𝑋 ∈ V ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) → 𝑋 ∈ V ) |
| 11 | simpl | ⊢ ( ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) → 𝑌 ∈ 𝐶 ) | |
| 12 | simpr | ⊢ ( ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) → 𝜓 ) | |
| 13 | 10 11 12 | 3jca | ⊢ ( ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) |
| 14 | 8 13 | impbii | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ↔ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) |
| 15 | 7 14 | bitri | ⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) |