This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 13-Oct-2003) Avoid ax-13 . (Revised by GG, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrabw.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| nfrabw.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | nfrabw | ⊢ Ⅎ 𝑥 { 𝑦 ∈ 𝐴 ∣ 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrabw.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | nfrabw.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | df-rab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } | |
| 4 | nftru | ⊢ Ⅎ 𝑦 ⊤ | |
| 5 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 6 | 5 1 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) |
| 7 | 6 | a1i | ⊢ ( ⊤ → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) ) |
| 8 | 4 7 | nfabdw | ⊢ ( ⊤ → Ⅎ 𝑥 { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 9 | 8 | mptru | ⊢ Ⅎ 𝑥 { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } |
| 10 | 3 9 | nfcxfr | ⊢ Ⅎ 𝑥 { 𝑦 ∈ 𝐴 ∣ 𝜑 } |