This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbc2iegf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| sbc2iegf.2 | ⊢ Ⅎ 𝑦 𝜓 | ||
| sbc2iegf.3 | ⊢ Ⅎ 𝑥 𝐵 ∈ 𝑊 | ||
| sbc2iegf.4 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | sbc2iegf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2iegf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | sbc2iegf.2 | ⊢ Ⅎ 𝑦 𝜓 | |
| 3 | sbc2iegf.3 | ⊢ Ⅎ 𝑥 𝐵 ∈ 𝑊 | |
| 4 | sbc2iegf.4 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) | |
| 6 | simpl | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑊 ) | |
| 7 | 4 | adantll | ⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 8 | nfv | ⊢ Ⅎ 𝑦 ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) | |
| 9 | 2 | a1i | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → Ⅎ 𝑦 𝜓 ) |
| 10 | 6 7 8 9 | sbciedf | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
| 11 | 10 | adantll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
| 12 | nfv | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝑉 | |
| 13 | 12 3 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) |
| 14 | 1 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → Ⅎ 𝑥 𝜓 ) |
| 15 | 5 11 13 14 | sbciedf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |