This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inversion function on the generators is an involution. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgmval.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| Assertion | efgmnvl | ⊢ ( 𝐴 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgmval.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 2 | elxp2 | ⊢ ( 𝐴 ∈ ( 𝐼 × 2o ) ↔ ∃ 𝑎 ∈ 𝐼 ∃ 𝑏 ∈ 2o 𝐴 = 〈 𝑎 , 𝑏 〉 ) | |
| 3 | 1 | efgmval | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → ( 𝑎 𝑀 𝑏 ) = 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) |
| 4 | 3 | fveq2d | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → ( 𝑀 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( 𝑀 ‘ 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) ) |
| 5 | df-ov | ⊢ ( 𝑎 𝑀 ( 1o ∖ 𝑏 ) ) = ( 𝑀 ‘ 〈 𝑎 , ( 1o ∖ 𝑏 ) 〉 ) | |
| 6 | 4 5 | eqtr4di | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → ( 𝑀 ‘ ( 𝑎 𝑀 𝑏 ) ) = ( 𝑎 𝑀 ( 1o ∖ 𝑏 ) ) ) |
| 7 | 2oconcl | ⊢ ( 𝑏 ∈ 2o → ( 1o ∖ 𝑏 ) ∈ 2o ) | |
| 8 | 1 | efgmval | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ ( 1o ∖ 𝑏 ) ∈ 2o ) → ( 𝑎 𝑀 ( 1o ∖ 𝑏 ) ) = 〈 𝑎 , ( 1o ∖ ( 1o ∖ 𝑏 ) ) 〉 ) |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → ( 𝑎 𝑀 ( 1o ∖ 𝑏 ) ) = 〈 𝑎 , ( 1o ∖ ( 1o ∖ 𝑏 ) ) 〉 ) |
| 10 | 1on | ⊢ 1o ∈ On | |
| 11 | 10 | onordi | ⊢ Ord 1o |
| 12 | ordtr | ⊢ ( Ord 1o → Tr 1o ) | |
| 13 | trsucss | ⊢ ( Tr 1o → ( 𝑏 ∈ suc 1o → 𝑏 ⊆ 1o ) ) | |
| 14 | 11 12 13 | mp2b | ⊢ ( 𝑏 ∈ suc 1o → 𝑏 ⊆ 1o ) |
| 15 | df-2o | ⊢ 2o = suc 1o | |
| 16 | 14 15 | eleq2s | ⊢ ( 𝑏 ∈ 2o → 𝑏 ⊆ 1o ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → 𝑏 ⊆ 1o ) |
| 18 | dfss4 | ⊢ ( 𝑏 ⊆ 1o ↔ ( 1o ∖ ( 1o ∖ 𝑏 ) ) = 𝑏 ) | |
| 19 | 17 18 | sylib | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → ( 1o ∖ ( 1o ∖ 𝑏 ) ) = 𝑏 ) |
| 20 | 19 | opeq2d | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → 〈 𝑎 , ( 1o ∖ ( 1o ∖ 𝑏 ) ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 21 | 6 9 20 | 3eqtrd | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → ( 𝑀 ‘ ( 𝑎 𝑀 𝑏 ) ) = 〈 𝑎 , 𝑏 〉 ) |
| 22 | fveq2 | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 〈 𝑎 , 𝑏 〉 ) ) | |
| 23 | df-ov | ⊢ ( 𝑎 𝑀 𝑏 ) = ( 𝑀 ‘ 〈 𝑎 , 𝑏 〉 ) | |
| 24 | 22 23 | eqtr4di | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑀 ‘ 𝐴 ) = ( 𝑎 𝑀 𝑏 ) ) |
| 25 | 24 | fveq2d | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑎 𝑀 𝑏 ) ) ) |
| 26 | id | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → 𝐴 = 〈 𝑎 , 𝑏 〉 ) | |
| 27 | 25 26 | eqeq12d | ⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ↔ ( 𝑀 ‘ ( 𝑎 𝑀 𝑏 ) ) = 〈 𝑎 , 𝑏 〉 ) ) |
| 28 | 21 27 | syl5ibrcom | ⊢ ( ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 2o ) → ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) ) |
| 29 | 28 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ 𝐼 ∃ 𝑏 ∈ 2o 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) |
| 30 | 2 29 | sylbi | ⊢ ( 𝐴 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝐴 ) ) = 𝐴 ) |