This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvsubf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvsubf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvsubf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| dvsubf.fdv | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | ||
| dvsubf.gdv | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | ||
| Assertion | dvsubf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f − 𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f − ( 𝑆 D 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvsubf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvsubf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvsubf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 4 | dvsubf.fdv | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 5 | dvsubf.gdv | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | |
| 6 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 7 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 9 | 4 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ↔ ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) ) |
| 10 | 8 9 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 12 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 14 | 10 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 15 | 13 14 | eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) ) ) |
| 16 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 17 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) | |
| 18 | 1 17 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ) |
| 19 | 5 | feq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐺 ) : dom ( 𝑆 D 𝐺 ) ⟶ ℂ ↔ ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) ) |
| 20 | 18 19 | mpbid | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) |
| 21 | 20 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ∈ ℂ ) |
| 22 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 24 | 20 | feqmptd | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 25 | 23 24 | eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) |
| 26 | 1 6 11 15 16 21 25 | dvmptsub | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) − ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 27 | ovex | ⊢ ( 𝑆 D 𝐹 ) ∈ V | |
| 28 | 27 | dmex | ⊢ dom ( 𝑆 D 𝐹 ) ∈ V |
| 29 | 4 28 | eqeltrrdi | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 30 | 29 6 16 12 22 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f − 𝐺 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 32 | 29 11 21 14 24 | offval2 | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f − ( 𝑆 D 𝐺 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝑆 D 𝐹 ) ‘ 𝑥 ) − ( ( 𝑆 D 𝐺 ) ‘ 𝑥 ) ) ) ) |
| 33 | 26 31 32 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f − 𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f − ( 𝑆 D 𝐺 ) ) ) |