This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: General value of ( F oF R G ) with no assumptions on functionality of F and G . (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | offval3 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐹 ∈ V ) |
| 3 | elex | ⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → 𝐺 ∈ V ) |
| 5 | dmexg | ⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) | |
| 6 | inex1g | ⊢ ( dom 𝐹 ∈ V → ( dom 𝐹 ∩ dom 𝐺 ) ∈ V ) | |
| 7 | mptexg | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ∈ V → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 10 | dmeq | ⊢ ( 𝑎 = 𝐹 → dom 𝑎 = dom 𝐹 ) | |
| 11 | dmeq | ⊢ ( 𝑏 = 𝐺 → dom 𝑏 = dom 𝐺 ) | |
| 12 | 10 11 | ineqan12d | ⊢ ( ( 𝑎 = 𝐹 ∧ 𝑏 = 𝐺 ) → ( dom 𝑎 ∩ dom 𝑏 ) = ( dom 𝐹 ∩ dom 𝐺 ) ) |
| 13 | fveq1 | ⊢ ( 𝑎 = 𝐹 → ( 𝑎 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 14 | fveq1 | ⊢ ( 𝑏 = 𝐺 → ( 𝑏 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 15 | 13 14 | oveqan12d | ⊢ ( ( 𝑎 = 𝐹 ∧ 𝑏 = 𝐺 ) → ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 16 | 12 15 | mpteq12dv | ⊢ ( ( 𝑎 = 𝐹 ∧ 𝑏 = 𝐺 ) → ( 𝑥 ∈ ( dom 𝑎 ∩ dom 𝑏 ) ↦ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 17 | df-of | ⊢ ∘f 𝑅 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑎 ∩ dom 𝑏 ) ↦ ( ( 𝑎 ‘ 𝑥 ) 𝑅 ( 𝑏 ‘ 𝑥 ) ) ) ) | |
| 18 | 16 17 | ovmpoga | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 19 | 2 4 9 18 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊 ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |