This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of a composition. (Contributed by NM, 28-May-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-11 . (Revised by BTernaryTau, 23-Jun-2025) Avoid ax-10 and ax-12 . (Revised by TM, 31-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmcosseq | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴 ∘ 𝐵 ) = dom 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss | ⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 | |
| 2 | 1 | a1i | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 ) |
| 3 | ssel | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) ) | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 4 | elrn | ⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝑦 ) |
| 6 | 4 | eldm | ⊢ ( 𝑦 ∈ dom 𝐴 ↔ ∃ 𝑧 𝑦 𝐴 𝑧 ) |
| 7 | 5 6 | imbi12i | ⊢ ( ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) ) |
| 8 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐵 𝑦 ↔ 𝑧 𝐵 𝑦 ) ) | |
| 9 | 8 | 19.8aw | ⊢ ( 𝑥 𝐵 𝑦 → ∃ 𝑥 𝑥 𝐵 𝑦 ) |
| 10 | 9 | imim1i | ⊢ ( ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) ) |
| 11 | pm3.2 | ⊢ ( 𝑥 𝐵 𝑦 → ( 𝑦 𝐴 𝑧 → ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) | |
| 12 | 11 | eximdv | ⊢ ( 𝑥 𝐵 𝑦 → ( ∃ 𝑧 𝑦 𝐴 𝑧 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 13 | 10 12 | sylcom | ⊢ ( ( ∃ 𝑥 𝑥 𝐵 𝑦 → ∃ 𝑧 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 14 | 7 13 | sylbi | ⊢ ( ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ dom 𝐴 ) → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 15 | 3 14 | syl | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑥 𝐵 𝑦 → ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 16 | 15 | eximdv | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑦 ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 17 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐵 𝑦 ↔ 𝑥 𝐵 𝑤 ) ) | |
| 18 | breq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝐴 𝑧 ↔ 𝑤 𝐴 𝑧 ) ) | |
| 19 | 17 18 | anbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) ) |
| 20 | 19 | excomimw | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 21 | 16 20 | syl6 | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 22 | vex | ⊢ 𝑥 ∈ V | |
| 23 | vex | ⊢ 𝑧 ∈ V | |
| 24 | 22 23 | opelco | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 25 | 24 | exbii | ⊢ ( ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 26 | 21 25 | imbitrrdi | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 → ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) ) |
| 27 | 22 | eldm | ⊢ ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 28 | 22 | eldm2 | ⊢ ( 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑧 〈 𝑥 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) |
| 29 | 26 27 28 | 3imtr4g | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → ( 𝑥 ∈ dom 𝐵 → 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) ) ) |
| 30 | 29 | ssrdv | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom ( 𝐴 ∘ 𝐵 ) ) |
| 31 | 2 30 | eqssd | ⊢ ( ran 𝐵 ⊆ dom 𝐴 → dom ( 𝐴 ∘ 𝐵 ) = dom 𝐵 ) |