This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvrec | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfcn | ⊢ ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ | |
| 2 | ssidd | ⊢ ( 𝐴 ∈ ℂ → ℂ ⊆ ℂ ) | |
| 3 | eldifsn | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) | |
| 4 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) | |
| 5 | 4 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
| 6 | 3 5 | sylan2b | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑥 ) ∈ ℂ ) |
| 7 | 6 | fmpttd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 8 | difssd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 9 | 2 7 8 | dvbss | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⊆ ( ℂ ∖ { 0 } ) ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ( ℂ ∖ { 0 } ) ) | |
| 11 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 12 | 11 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 13 | cnn0opn | ⊢ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) | |
| 14 | isopn3i | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) = ( ℂ ∖ { 0 } ) ) | |
| 15 | 12 13 14 | mp2an | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) = ( ℂ ∖ { 0 } ) |
| 16 | 10 15 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) ) |
| 17 | eldifi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 19 | 18 | sqvald | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) = ( 𝑦 · 𝑦 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( 𝐴 / ( 𝑦 · 𝑦 ) ) ) |
| 21 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) | |
| 22 | eldifsni | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
| 24 | 21 18 18 23 23 | divdiv1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝐴 / 𝑦 ) / 𝑦 ) = ( 𝐴 / ( 𝑦 · 𝑦 ) ) ) |
| 25 | 20 24 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 26 | 25 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = - ( ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 27 | 21 18 23 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 28 | 27 18 23 | divnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( ( 𝐴 / 𝑦 ) / 𝑦 ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 29 | 26 28 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) |
| 30 | 27 | negcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 31 | eqid | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) | |
| 32 | 31 | cdivcncf | ⊢ ( - ( 𝐴 / 𝑦 ) ∈ ℂ → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
| 33 | 30 32 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
| 34 | oveq2 | ⊢ ( 𝑧 = 𝑦 → ( - ( 𝐴 / 𝑦 ) / 𝑧 ) = ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ) | |
| 35 | 33 10 34 | cnmptlimc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( - ( 𝐴 / 𝑦 ) / 𝑦 ) ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) ) |
| 36 | 29 35 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) ) |
| 37 | cncff | ⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) | |
| 38 | 33 37 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 39 | 38 | limcdif | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) = ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) limℂ 𝑦 ) ) |
| 40 | eldifi | ⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) | |
| 41 | 40 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
| 42 | 41 | eldifad | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ∈ ℂ ) |
| 43 | 17 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑦 ∈ ℂ ) |
| 44 | 42 43 | subcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 − 𝑦 ) ∈ ℂ ) |
| 45 | 27 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 46 | eldifsni | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ≠ 0 ) | |
| 47 | 41 46 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ≠ 0 ) |
| 48 | 45 42 47 | divcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) |
| 49 | mulneg12 | ⊢ ( ( ( 𝑧 − 𝑦 ) ∈ ℂ ∧ ( ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) | |
| 50 | 44 48 49 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 51 | 43 42 48 | subdird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 − 𝑧 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) − ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) ) |
| 52 | 42 43 | negsubdi2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( 𝑧 − 𝑦 ) = ( 𝑦 − 𝑧 ) ) |
| 53 | 52 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑦 − 𝑧 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 54 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑧 ) ) | |
| 55 | eqid | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) | |
| 56 | ovex | ⊢ ( 𝐴 / 𝑧 ) ∈ V | |
| 57 | 54 55 56 | fvmpt | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
| 58 | 41 57 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
| 59 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝐴 ∈ ℂ ) | |
| 60 | 22 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑦 ≠ 0 ) |
| 61 | 59 43 60 | divcan2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑦 · ( 𝐴 / 𝑦 ) ) = 𝐴 ) |
| 62 | 61 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 · ( 𝐴 / 𝑦 ) ) / 𝑧 ) = ( 𝐴 / 𝑧 ) ) |
| 63 | 43 45 42 47 | divassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑦 · ( 𝐴 / 𝑦 ) ) / 𝑧 ) = ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 64 | 58 62 63 | 3eqtr2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) = ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 65 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 / 𝑥 ) = ( 𝐴 / 𝑦 ) ) | |
| 66 | ovex | ⊢ ( 𝐴 / 𝑦 ) ∈ V | |
| 67 | 65 55 66 | fvmpt | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 / 𝑦 ) ) |
| 68 | 67 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝐴 / 𝑦 ) ) |
| 69 | 45 42 47 | divcan2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( 𝐴 / 𝑦 ) ) |
| 70 | 68 69 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) = ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 71 | 64 70 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝑦 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) − ( 𝑧 · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) ) |
| 72 | 51 53 71 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝑧 − 𝑦 ) · ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) ) |
| 73 | 45 42 47 | divnegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( ( 𝐴 / 𝑦 ) / 𝑧 ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 74 | 73 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( 𝑧 − 𝑦 ) · - ( ( 𝐴 / 𝑦 ) / 𝑧 ) ) = ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 75 | 50 72 74 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) = ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 76 | 75 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) = ( ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) / ( 𝑧 − 𝑦 ) ) ) |
| 77 | 45 | negcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → - ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 78 | 77 42 47 | divcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ∈ ℂ ) |
| 79 | eldifsni | ⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) → 𝑧 ≠ 𝑦 ) | |
| 80 | 79 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → 𝑧 ≠ 𝑦 ) |
| 81 | 42 43 80 | subne0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( 𝑧 − 𝑦 ) ≠ 0 ) |
| 82 | 78 44 81 | divcan3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( 𝑧 − 𝑦 ) · ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) / ( 𝑧 − 𝑦 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 83 | 76 82 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) → ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) = ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 84 | 83 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) |
| 85 | difss | ⊢ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ⊆ ( ℂ ∖ { 0 } ) | |
| 86 | resmpt | ⊢ ( ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ⊆ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ) | |
| 87 | 85 86 | ax-mp | ⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) |
| 88 | 84 87 | eqtr4di | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) ) |
| 89 | 88 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) = ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) ↾ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ) limℂ 𝑦 ) ) |
| 90 | 39 89 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( - ( 𝐴 / 𝑦 ) / 𝑧 ) ) limℂ 𝑦 ) = ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) |
| 91 | 36 90 | eleqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) |
| 92 | 11 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 93 | 92 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 94 | eqid | ⊢ ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) = ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) | |
| 95 | ssidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ℂ ⊆ ℂ ) | |
| 96 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 97 | difssd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 98 | 93 11 94 95 96 97 | eldv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ↔ ( 𝑦 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ℂ ∖ { 0 } ) ) ∧ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ( ( 𝑧 ∈ ( ( ℂ ∖ { 0 } ) ∖ { 𝑦 } ) ↦ ( ( ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑧 ) − ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ‘ 𝑦 ) ) / ( 𝑧 − 𝑦 ) ) ) limℂ 𝑦 ) ) ) ) |
| 99 | 16 91 98 | mpbir2and | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 100 | vex | ⊢ 𝑦 ∈ V | |
| 101 | negex | ⊢ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ V | |
| 102 | 100 101 | breldm | ⊢ ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) → 𝑦 ∈ dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
| 103 | 99 102 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
| 104 | 9 103 | eqelssd | ⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) = ( ℂ ∖ { 0 } ) ) |
| 105 | 104 | feq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ ↔ ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) ) |
| 106 | 1 105 | mpbii | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 107 | 106 | ffnd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
| 108 | negex | ⊢ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V | |
| 109 | 108 | rgenw | ⊢ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V |
| 110 | eqid | ⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) | |
| 111 | 110 | fnmpt | ⊢ ( ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ∈ V → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
| 112 | 109 111 | mp1i | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) Fn ( ℂ ∖ { 0 } ) ) |
| 113 | ffun | ⊢ ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) : dom ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ⟶ ℂ → Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) | |
| 114 | 1 113 | mp1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ) |
| 115 | funbrfv | ⊢ ( Fun ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) → ( 𝑦 ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) - ( 𝐴 / ( 𝑦 ↑ 2 ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) ) | |
| 116 | 114 99 115 | sylc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 117 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) | |
| 118 | 117 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 / ( 𝑥 ↑ 2 ) ) = ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 119 | 118 | negeqd | ⊢ ( 𝑥 = 𝑦 → - ( 𝐴 / ( 𝑥 ↑ 2 ) ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 120 | 119 110 101 | fvmpt | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 121 | 120 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) = - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) |
| 122 | 116 121 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ‘ 𝑦 ) ) |
| 123 | 107 112 122 | eqfnfvd | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑥 ↑ 2 ) ) ) ) |