This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cdivcncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) | |
| Assertion | cdivcncf | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdivcncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 5 | difss | ⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ | |
| 6 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
| 8 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 9 | 7 4 8 | cnmptc | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ 𝐴 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 10 | 7 | cnmptid | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ 𝑥 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) ) |
| 11 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) | |
| 12 | 2 11 | divcn | ⊢ / ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 13 | 12 | a1i | ⊢ ( 𝐴 ∈ ℂ → / ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 | 7 9 10 13 | cnmpt12f | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑥 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 15 | ssid | ⊢ ℂ ⊆ ℂ | |
| 16 | 3 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 17 | 2 11 16 | cncfcn | ⊢ ( ( ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 18 | 5 15 17 | mp2an | ⊢ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ℂ ∖ { 0 } ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 19 | 14 1 18 | 3eltr4g | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |