This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcmul.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvcmul.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvcmul.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| dvcmul.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | ||
| dvcmul.c | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) | ||
| Assertion | dvcmul | ⊢ ( 𝜑 → ( ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcmul.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvcmul.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvcmul.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 4 | dvcmul.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | |
| 5 | dvcmul.c | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D 𝐹 ) ) | |
| 6 | fconst6g | ⊢ ( 𝐴 ∈ ℂ → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ ℂ ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → ( 𝑆 × { 𝐴 } ) : 𝑆 ⟶ ℂ ) |
| 8 | ssidd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑆 ) | |
| 9 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 11 | 10 2 4 | dvbss | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) ⊆ 𝑋 ) |
| 12 | 11 5 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 13 | 4 12 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) |
| 14 | fconst6g | ⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) | |
| 15 | 3 14 | syl | ⊢ ( 𝜑 → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) |
| 16 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 17 | dvconst | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) | |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → ( ℂ D ( ℂ × { 𝐴 } ) ) = ( ℂ × { 0 } ) ) |
| 19 | 18 | dmeqd | ⊢ ( 𝜑 → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = dom ( ℂ × { 0 } ) ) |
| 20 | c0ex | ⊢ 0 ∈ V | |
| 21 | 20 | fconst | ⊢ ( ℂ × { 0 } ) : ℂ ⟶ { 0 } |
| 22 | 21 | fdmi | ⊢ dom ( ℂ × { 0 } ) = ℂ |
| 23 | 19 22 | eqtrdi | ⊢ ( 𝜑 → dom ( ℂ D ( ℂ × { 𝐴 } ) ) = ℂ ) |
| 24 | 10 23 | sseqtrrd | ⊢ ( 𝜑 → 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) |
| 25 | dvres3 | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D ( ℂ × { 𝐴 } ) ) ) ) → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) | |
| 26 | 1 15 16 24 25 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) ) |
| 27 | xpssres | ⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) | |
| 28 | 10 27 | syl | ⊢ ( 𝜑 → ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) = ( 𝑆 × { 𝐴 } ) ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( ( ℂ × { 𝐴 } ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ) |
| 30 | 18 | reseq1d | ⊢ ( 𝜑 → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( ( ℂ × { 0 } ) ↾ 𝑆 ) ) |
| 31 | xpssres | ⊢ ( 𝑆 ⊆ ℂ → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) | |
| 32 | 10 31 | syl | ⊢ ( 𝜑 → ( ( ℂ × { 0 } ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 33 | 30 32 | eqtrd | ⊢ ( 𝜑 → ( ( ℂ D ( ℂ × { 𝐴 } ) ) ↾ 𝑆 ) = ( 𝑆 × { 0 } ) ) |
| 34 | 26 29 33 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑆 × { 0 } ) ) |
| 35 | 20 | fconst2 | ⊢ ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) : 𝑆 ⟶ { 0 } ↔ ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = ( 𝑆 × { 0 } ) ) |
| 36 | 34 35 | sylibr | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) : 𝑆 ⟶ { 0 } ) |
| 37 | 36 | fdmd | ⊢ ( 𝜑 → dom ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) = 𝑆 ) |
| 38 | 13 37 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ dom ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ) |
| 39 | 7 8 2 4 1 38 5 | dvmul | ⊢ ( 𝜑 → ( ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) ‘ 𝐶 ) = ( ( ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) · ( 𝐹 ‘ 𝐶 ) ) + ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) ) ) ) |
| 40 | 34 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) = ( ( 𝑆 × { 0 } ) ‘ 𝐶 ) ) |
| 41 | 20 | fvconst2 | ⊢ ( 𝐶 ∈ 𝑆 → ( ( 𝑆 × { 0 } ) ‘ 𝐶 ) = 0 ) |
| 42 | 13 41 | syl | ⊢ ( 𝜑 → ( ( 𝑆 × { 0 } ) ‘ 𝐶 ) = 0 ) |
| 43 | 40 42 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) = 0 ) |
| 44 | 43 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) · ( 𝐹 ‘ 𝐶 ) ) = ( 0 · ( 𝐹 ‘ 𝐶 ) ) ) |
| 45 | 2 12 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 46 | 45 | mul02d | ⊢ ( 𝜑 → ( 0 · ( 𝐹 ‘ 𝐶 ) ) = 0 ) |
| 47 | 44 46 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) · ( 𝐹 ‘ 𝐶 ) ) = 0 ) |
| 48 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) = 𝐴 ) | |
| 49 | 3 13 48 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) = 𝐴 ) |
| 50 | 49 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) ) = ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · 𝐴 ) ) |
| 51 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) | |
| 52 | 1 51 | syl | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
| 53 | 52 5 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) |
| 54 | 53 3 | mulcomd | ⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · 𝐴 ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 55 | 50 54 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 56 | 47 55 | oveq12d | ⊢ ( 𝜑 → ( ( ( ( 𝑆 D ( 𝑆 × { 𝐴 } ) ) ‘ 𝐶 ) · ( 𝐹 ‘ 𝐶 ) ) + ( ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) · ( ( 𝑆 × { 𝐴 } ) ‘ 𝐶 ) ) ) = ( 0 + ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) ) |
| 57 | 3 53 | mulcld | ⊢ ( 𝜑 → ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ∈ ℂ ) |
| 58 | 57 | addlidd | ⊢ ( 𝜑 → ( 0 + ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |
| 59 | 39 56 58 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑆 D ( ( 𝑆 × { 𝐴 } ) ∘f · 𝐹 ) ) ‘ 𝐶 ) = ( 𝐴 · ( ( 𝑆 D 𝐹 ) ‘ 𝐶 ) ) ) |